
JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 20 22 NOVEMBER 2003
On one-dimensional discrete variable representations
with general basis functions

Viktor Szalaya)

Crystal Physics Laboratory, Research Institute for Solid State Physics and Optics, Hungarian Academy
of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
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The method of discrete variable representation~DVR! is based on standard orthogonal polynomial
bases and the associated Gaussian quadratures. General basis functions correspond either to
nonpolynomial expressions or to nonstandard orthogonal polynomials. Although one cannot directly
relate any Gaussian quadrature to general basis functions, the DVR-like representation derivable
with such basis sets via the transformation~diagonalization! method is, as proved here, of Gaussian
quadrature accuracy. The optimal generalized DVR~GDVR! is an alternative to and entirely
different from this DVR-like representation. Yet, when built from the same general basis functions
and the corresponding quadrature points obtained by the diagonalization method, the two
representations are found to give almost identical numerical results. The intricate relationship
between the optimal GDVR and the transformation method is discussed. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1621619#
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I. INTRODUCTION

There are several ways of setting up a matrix repres
tation for solving the Schro¨dinger equation, say, of the vibra
tional Hamiltonian of a molecule. One of these methods
the method of discrete variable representation~DVR!.1–4 The
DVR is based on truncated standard orthonormal polynom
bases,$fn(q)%n50

N21, and the corresponding Gaussian quad
tures. Orthonormality means that the integra
*a

bfm* (q)fn(q)r(q)dq, where the actual functional form o
the positive weight functionr(q) and the actual values of th
limits of integration depend on the basis considered,
equal to 1 form5n and 0 formÞn.

In the DVR the matrix elements of differential operato
are calculated exactly, whereas those of the operators w
are local in the coordinate representation, e.g., the pote
energy operator, are calculated approximately, with Gaus
quadrature accuracy. For a given number of points
weights the Gaussian quadrature gives the most accurat
proximation to an integral. This contributes to the accura
and efficiency of the DVR method.

One may calculate the quadrature points,qi ,i
51,2,...,N, the quadrature weights,wi ,i 51,2,...,N, and the
matrix T transforming to the DVR by diagonalizing the m
trix of the coordinate operator, i.e., the matrixQ with ele-
mentsQm,n5*a

bfm* (q)qfn(q)r(q)dq.1,3,4 The eigenvalues
of Q give the quadrature points. The eigenvector matrix oQ
is identical with the transformation matrixT. Specifically,
the equation

T5F, ~1!

a!Author to whom correspondence should be addressed. Electronic
viktor@power.szfki.kfki.hu
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where

Fn,i5wi
1/2fn* ~qi ! ~2!

also holds. Often this method is called the transformation
diagonalization method. Its close relation to Gauss
quadrature has been shown by Dickinson and Certain4 and it
explains its high accuracy.

If $fn(q)%n50
N21 is a truncated general, i.e., nonpolyn

mial or nonstandard orthogonal polynomial, orthonormal b
sis one can still use the transformation method. One can
up Q and calculate quadrature pointsqi and a transformation
matrix T leading to a DVR-like representation. However,T
can no longer be expressed as in Eq.~1! and theqi ’s can no
longer be considered as Gaussian quadrature points as
ated with the$fn(q)%n50

N21 basis. Yet, even in this case, th
transformation method is of Gaussian quadrature accur
as shown in Sec. II, where the proof of equivalence of
transformation method and the Gaussian quadrature app
mation, as given by Dickinson and Certain4 for the case of
standard orthogonal polynomial bases, is extended to gen
bases.

The representation obtained by the diagonalizat
method is not the only DVR-like representation that can
derived by employing the same quadrature points and g
eral basis functions. The optimal generalized DVR meth5

gives another, completely different DVR-like representatio
The question arises whether the accuracy of these diffe
representations are comparable when, for instance, applie
solving the eigenvalue equation of a Hamiltonian opera
The answer is given in Sec. III by considering simple n
merical examples. In Sec. IV we summarize the results.
il:
2 © 2003 American Institute of Physics
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II. THE TRANSFORMATION METHOD USING
GENERAL BASES

A. Setting the problem up

Consider a simple one-dimensional Hamiltonian,

Ĥ5K̂1V̂52
d2

dq2 1V~q!, ~3!

with a kinetic energy operatorK̂ and a potential energy func
tion V(q). Let $fn(q)%n50

N21 be a truncated general basis, o
thonormal with respect to a positive weighting functio
r(q). Derive the quadrature pointsqi and the transformation
matrix T by diagonalizing the matrix of the coordinate o
erator given in thefn basis. Then, a matrix representatio
for the Schro¨dinger equation ofĤ can be written as

~K1TVT †!C5CE, ~4!

whereK is the kinetic energy matrix with elements

Km,n5E
a

b

r1/2~q!fm* ~q!K̂r1/2~q!fn~q!dq, ~5!

V is a diagonal matrix,

Vj ,i5d j ,iV~qi !, ~6!

with d j ,i the Kronecker-delta symbol, the superscript
stands for Hermitian conjugation, and thepth eigenfunction
Cp(q) is approximated as

Cp~q!. (
n50

N21

Cn,pfn~q!. ~7!

Note that theCp(q)’s so defined are orthonormal with re
spect to the weight functionr(q). In this representation
called a finite basis representation~FBR!, the potential ma-
trix elements are approximated by

Vm,n
VBR5E

a

b

fm* ~q!V~q!fn~q!r~q!dq

.Vm,n
FBR5~TVT †!m,n , ~8!

where VBR is the acronym for variational basis represen
tion.

The FBR of Eq.~4! can be transformed into a DVR-lik
representation:

~T†KT 1V!~T†C!5~T†C!E. ~9!

The transformation leaves the eigenvalues intact; the
representations are equivalent in this sense.

Therefore, to judge the accuracy of the DVR-like rep
sentation in solving the Schro¨dinger equation it suffices to
investigate the accuracy of the approximation to the poten
matrix elements in the FBR given in Eq.~4!, or that in any
FBR,

~MKM †1MTVT †M†!~MC !5~MC !E, ~10!

obtained by a unitary transformationM from Eq. ~4!. Equa-
tion ~4! and Eq.~10! are equivalent FBRs. The transform
tion by M amounts to introducing a new basis s
$cn(q)%n50

N21, related to the original set by the unitary tran
formationM :
Downloaded 18 Nov 2003 to 157.181.193.177. Redistribution subject to 
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m50

N21

Mn,m* fm~q!. ~11!

In what follows it is shown that with a suitable choice
M the approximation

Vm,n
VBR5E

a

b

cm* ~q!V~q!cn~q!r~q!dq

.Vm,n
FBR5~MTVT †M†!m,n ~12!

corresponds to Gaussian quadrature approximation with
qi ’s as quadrature points.

B. Expressing the FBR matrix elements of Eq. „12…
in terms of polynomials

The coordinate operator is Hermitian and its matrixQ
given in the general basis$fn(q)%n50

N21 is a Hermitian matrix.
Therefore, one can choose the unitary matrixM such that the
matrix of the coordinate operator given in the$cn(q)%n50

N21

basis,QT , is real, symmetric, and tridiagonal, that is

QT5S a0 b0 . . . 0

b0 a1 b1 . . .

. . . . . .

. . . . . .

. . . bN23 aN22 bN22

0 . . . bN22 aN21

D , ~13!

with real entries. Naturally,Q and QT have the same set
$qi% i 51

N , of eigenvalues.
Let the polynomials $sn(q)%n50

N21 and s̃N(q)
5bN21sN(q) be defined by the equations

bn21sn~q!5@q2an21#sn21~q!2bn22sn22~q!,

n51,2,...,N
~14!

s21~q!50,

s0~q!51.

Save the case of standard orthogonal polynomial bases
entries inQT depend onN ~i.e., the values ofa0 , b0 , etc.
depend onN), therefore the polynomialssn obtained with
different N’s are different.

Denote the zeros of the polynomials̃N(q) by $xi% i 51
N .

By relying on the recurrence relation one can derive,
described in the Appendix as well as in Refs. 6 and 7,
Christoffel–Darboux identity and establish the equations

(
n50

N21

wi
1/2sn~xi !wj

1/2sn~xj !5d i , j , ~15!

with wi denoting the weights

wi5F S ds̃N~q!

dq D
q5xi

sN21~xi !G21

, ~16!

and i , j 51,2,...,N. By making use of Eqs.~14! and Eq.~15!
one can also show, similarly to the treatment in Ref. 4, t
the matrixF,
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Fn,i5wi
1/2sn~xi !, ~17!

n50,1,...,N21; i 51,2,...,N,

diagonalizesQT with the i th column inF corresponding to
the i th eigenvector andxi corresponding to thei th eigen-
value ofQT . Thus the zeros ofs̃N(q) are also the eigenval
ues ofQT , i.e., xi5qi ,i 51,2,...,N.

Since F is an eigenvector matrix of a real symmetr
matrix, F is an orthogonal matrix, and in addition to th
orthogonality relation, Eq.~15!, the orthogonality relation

(
i 51

N

wi
1/2sn~qi !wi

1/2sm~qi !5dn,m ,

~18!
n,m50,1,...,N21,

also holds. By construction, the matrix that diagonalizesQT

is MT . Since we have shown that the matrixF given in Eq.
~17! also diagonalizesQT we haveMT e5F and thus Eq.
~12! may be rewritten as

Vm,n
VBR5E

a

b

cm* ~q!V~q!cn~q!r~q!dq

.Vm,n
FBR5~MTVT †M†!m,n5~FVFT!m,n

5(
i 51

N

wism~qi !V~qi !sn~qi !, ~19!

where the superscriptT denotes transposition,e is a diagonal
matrix with diagonal elements of unit magnitude, and it
also assumed thatT is unitary, i.e.,TT†5T†T5I with I
denoting the unit matrix of dimensionN3N. Note thatT is
unitary providedQ has no degenerate eigenvalues. IfQ had
degenarate eigenvaluesT might not be unitary but it could
be made unitary by orthogonalization of the eigenvect
belonging to degenerate eigenvalues.

Now, suppose that the potential energy function is giv
by a polynomial of degreeK. Then, form1n1K,2N,

E
a

b

cm* ~q!V~q!cn~q!r~q!dq

5(
i 51

N

wism~qi !V~qi !sn~qi !

5E
a

b

sm~q!V~q!sn~q!u~q!dq, ~20!

whereas form1n1K>2N the signs of equality must b
replaced by the sign of approximately equal. The first equ
ity is a consequence of the tridiagonality ofQT .3 The second
equality holds provided that there exists a weighting funct
u(q) making$sn(q)%n50

N21 orthonormalized.
Thus, to show the Gaussian quadrature approxima

property of the approximation in Eq.~19! we are left to show
the existence of a functionu(q) such that the polynomials
$sn(q)%n50

N21 form an orthonormalized~normalized to unity!
set and are orthogonal tos̃N(q) with this u(q) as a weight
function.

One may prescribe additional properties that the wei
function should satisfy. One may, for instance, restrict
Downloaded 18 Nov 2003 to 157.181.193.177. Redistribution subject to 
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positive weight functions and require that this weight fun
tion should approach a smooth function asN→`. Although
neither of these is neccessary to prove the Gaussian qua
ture approximation property of the approximation in E
~19!, they may be decisive in determining how fast t
quadrature error decreases with increasingN, i.e., in deter-
mining the convergence properties of the calculations.

C. On the existence of a suitable weighting
function u „q …

Suppose that the desiredu(q) function exists. ThenQT ,
i.e., the matrix of the coordinate operator given in t
$cn(q)%n50

N21 basis, is identical to the matrix of the coordina
operator calculated in the polynomial basis$sn(q)%n50

N21. The
eigenvalues ofQT correspond to Gaussian quadrature poin
as shown below.

Consider the integral

I 5E
a

b

f ~q!u~q!dq5E
a

b

s0~q! f ~q!u~q!dq, ~21!

@the limits of integration are those corresponding to the i
tial basis$fn(q)%n50

N21] and its quadrature approximation

I .(
i 51

N

wi f ~qi !. ~22!

Simple arguments, that we shall recall, show that the qua
ture approximation in Eq.~22! is exact to any polynomia
f (q) of degree less than 2N. If f (q) is a polynomial of
degree less thanN, then f (q)5(n50

N21gnsn(q) and I 5g0 .
Due to Eq.~18! the quadrature approximation gives the exa
I . Supposef (q) is a polynomial of degree less than 2N.
Then f (q)5sN(q)s(q)1r (q), where s(q) and r (q) are
polynomials of degree at most N21, and I
5*a

br (q)u(q)dq. Since the quadrature points are the ze
of sN(q) and since the quadrature approximation has b
shown to be exact for polynomials of degree less thanN, the
quadrature approximation is exact to polynomials of deg
less than 2N, i.e., it is a Gaussian quadrature approximatio

Therefore, provided a suitable functionu(q) exists, the
approximation in Eq.~19! does correspond to the Gaussi
quadrature approximation with quadrature points obtained
the diagonalization method. In addition, note that any furt
unitary transformation of the basis merely redistributes a
scatters the quadrature error to many more matrix elem
without affecting the accuracy of the representation, e
when solving the eigenvalue problem, Eq.~10!.

We shall argue that a functionu(q) desired does exist.
Satisfying theN(N11)/211 equations,

E
a

b

u~q!sn~q!sn~q!dq51, n50,1,...,N21; ~23!

E
a

b

u~q!sn~q!qsn~q!dq5an , n50,1,...,N21; ~24!

E
a

b

u~q!sm~q!qsn21~q!dq50,

n53,4,...,N and m50,1,...,n23, ~25!
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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guarantees thatu(q) is suitable, i.e., the polynomial
$sn(q)%n50

N21 become an orthonormalized set and become
thogonal tos̃N(q) with this u(q). Let

u~q!5u~q,$ci% i 51
N(N11)/211!, ~26!

and determine the values of the parameters$ci% i 51
N(N11)/211 by

using Eqs.~23!–~25!. We shall show that, in general, th
sytem of equations can be solved, and a functionu(q) de-
sired does exist. We show this by proving that the oppo
statement, namely thatthere is no function u(q) satisfying
Eqs. (23)–(25), cannot be valid.

If no function u(q) can satisfy Eqs.~23!–~25!, then
these equations must contain at least one inconsistent s
ment. Note that the integrands@not including the function
u(q)] in Eqs. ~23!–~25! are polynomials.

Were a polynomial from Eq.~24! and another from Eq
~25! identical, inconsistency would arise since, in gene
anÞ0 and no suitableu(q) could be found. Similarly, no
suitableu(q) would exist if a polynomial in Eq.~23! were
identical to a polynomial in Eq.~25!. Given the origin and
definition of thesn(q) polynomials, the occurrence of suc
situations is, however, nongeneric and can be excluded f
consideration.

Let Nk denote the number of different polynomials
degreek appearing in Eq.~25!. If Nk.k for a givenk held
then any polynomial of degreek could be written as a linea
combination of thesek-degree polynomials. Then, dependin
on the parity ofk, either Eq.~24! with 2n115k and an

Þ0 or Eq.~23! with 2n5k would lead to contradiction and
would prove that nou(q) can satisfy Eqs.~23!–~25!. How-
ever, such situations, unless deliberately created, can ha
occur in practice. Indeed, even when assuming that all
polynomials of degreek given in Eq.~25! are different, one
obtains that

Nk5

¦

~k21!/2,

if k is odd and 3<k<N;

~k22!/2,

if k is even and 3<k<N;

~2N2k21!/2,

if 2N2k is odd andN,k<2N23;

~2N2k22!/2,

if 2N2k is even andN,k<2N23;

~27!

i.e., Nk is less thank, which could be reversed only unde
special assumptions about the entries inQT . Therefore, the
N(N11)/211 equations, Eqs.~23!–~25!, are, in general,
consistent and may be solved for theN(N11)/211 un-
known parameters given in Eq.~27! definingu(q).

Thus, we have shown the equivalence of the transfor
tion method and the Gaussian quadrature approximation
the case of general bases.
Downloaded 18 Nov 2003 to 157.181.193.177. Redistribution subject to 
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III. THE TRANSFORMATION METHOD
AND THE OPTIMAL GENERALIZED DVR

Given a truncated, general orthonormal basis s
$fn(q)%n50

N21, and a set of grid points and weight
$qi ,wi% i 51

N , one can set up5 a FBR for the eigenvalue equa
tion of Ĥ as

~K1FD21VF†!C5CE, ~28!

whereD5F†F, andF, K , V, andC are defined in Eqs.~2!,
~5!, ~6!, and~7!, respectively. This FBR may be transforme
into an equivalent representation,

~F†KFD211V!~F†C!5~F†C!E, ~29!

called the optimal generalized DVR.5 The optimal GDVR is
defined, although it may not be equally efficient, with any
of grid points and weights. It was shown to have exponen
convergence.8

Were the basis functions standard orthogonal polyno
als and the grid points and weights were those of the ass
ated Gaussian quadrature,F would be equal toT, D would
be equal to the unit matrix, and the optimal GDVR wou
reduce to the standard DVR derivable by the transforma
method. With general basis functions and with the cor
sponding grid points derived by the diagonalization meth
however,F is not equal toT, D is not the unit matrix, and
the optimal GDVR given in Eq.~29! does not simplify to the
DVR-like representation, Eq.~9!, obtained by the transfor
mation method. Thus, we have two distinct representati
apparently employing the same basis functions and g
points. While in the GDVR one has to solve the eigenva
problem of an asymmetric matrix, in the transformati
method one has to solve the eigenvalue problem of a s
metric matrix. While thei th element of thenth eigenvector
obtained by the GDVR method is proportional to the val
of the nth eigenfunction taken at thei th grid point,5 an ad-
vantageous property that may be used to contract the b
set by throwing away grid points where the wave function
known to be small, one cannot establish a similar relati
ship concerning the eigenvectors obtained by the transfor
tion method.

The FBR of the potential energy operator in the transf
mation method involves, implicitly, an orthogonal polyn
mial basis, the$sn(q)%n50

N21 set, and is of Gaussian quadr
ture accuracy. The FBR of the potential energy operato
the optimal GDVR, however, is hard to relate~except in the
case of a standard orthogonal polynomial basis! to the
Gaussian quadrature approximation. This suggests that
optimal GDVR might give less accurate eigenvalues than
DVR-like representation derived by the transformati
method. At first glance this might be surprising, since t
optimal GDVR has been shown to be the most accurate
resentation among all representations employing the s
basis functions and quadrature points.5 Note, however, that
the transformation method employs~implicitly ! two different
bases. The$fn(q)%n50

N21 basis is used to form the matrix ele
ments of the kinetic energy operator, while the$xn(q)%n50

N21

basis, wherexn(q)5(m50
N21Mm,nsm(q), is used to form the

FBR of the potential energy operator. The optimal GDV
relies exclusively on the$fn(q)%n50

N21 basis. The optimal
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 18 No
TABLE I. Eigenvalues of the Hamiltonian of Eq.~30! as calculated with a basis set consisting of the first
eigenfunctions of the Hamiltonian of Eq.~31! and using different matrix representations.

Transformation method GDVRa VBRb Accuratec

1 1.614895064 1.614895069 1.614894252 1.614894082
2 5.656442162 5.656442160 5.656449635 5.656437055
3 11.107339593 11.107339940 11.107378164 11.10735333
4 17.637339719 17.637339395 17.638218119 17.63777127
5 25.064086745 25.064096710 25.069886577 25.06867056
6 33.278734997 33.278733648 33.297180465 33.29346366
7 42.189692496 42.189824402 42.252156070 42.23672871
8 51.981066951 51.980962039 51.904267355 51.84129996
9 62.668918878 62.676853057 62.137428525 62.06188595

10 69.738392060 69.729540448 77.251252657 72.86143412
11 70.693718739 70.693291637 92.555156459 84.20889100
12 122.467368704 122.465864484 144.539895982 96.07773478
13 125.321983645 125.322120603 173.930211698 108.44496725
14 293.849155740 293.851435172 332.706607268 121.29039493
15 296.504025194 296.504421925 388.866395065 134.59610053

aGDVR5generalized discrete variable representation.
bVBR5variational basis representation.
cAccurate eigenvalues converged up to the last digit quoted. They were obtained by comparing the re
two VBR calculations with basis sizes 55 and 75, respectively.
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GDVR and the DVR-like representation derived by t
transformation method become identical once the same b
are employed in their derivations, since then, the matrixF is
defined by the equationF5M†F and not by Eq.~2!.

A comparison of numerical results obtained by the op
mal GDVR ~using a single basis!, Eq. ~29!, with those ob-
tained by the transformation method, Eq.~9!, tests the accu-
racy of the approximation of the potential matrix elements
Eq. ~28!.

As an example, we have calculated the eigenvalue
the Hamiltonian,

Ĥ52
d2

dq2 1q21q41q6, ~30!

in three different representations of the same dimension.
basis functions we used the eigenfunctions of the qua
oscillator Hamiltonian,

Ĥ052
d2

dq2 1q21q4, ~31!

that we derived by solving the Schro¨dinger equation forĤ0

using a large Gauss–Hermite DVR. We have calculated th
different representations for the Schro¨dinger equation forĤ
in this basis: the VBR, the DVR-like representation, Eq.~9!,
obtained by the transformation method, and the optim
GDVR. In the GDVR we used the same grid as in the tra
formation method and set the quadrature weights to o
~The results of optimal GDVR calculations do not depend
the values of the quadrature weights; see Ref. 5.! For the
calculation of the VBR of the potential energy operator
used Gauss–Hermite quadrature. The VBR results serve
a reference of comparison.

The numerical results presented in Table I and Fig
show that the results by the optimal GDVR method are
most as accurate as those obtained by the transforma
method. The same has been observed when employing p
nomial potentials different from those given in Eq.~30! and
v 2003 to 157.181.193.177. Redistribution subject to 
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Eq. ~31!. It follows that in the examples considered the a
proximation of the potential matrix elements in Eq.~28! is of
nearly Gaussian quadrature accuracy when the grid po
are derived by the diagonalization method.

It must be noted that since the Hamiltonian matrix giv
in the GDVR, Eq.~29!, is asymmetric, one, in principle, ma
obtain complex eigenvalues. In the sample calculation wh
results are presented in Table I, no complex eigenvalues w
obtained. In other calculations we did obtain complex eig
values. Then, in fact, all eigenvalues obtained were comp
numbers having exactly the same imaginary part, wherea
eigenvectors were real. Under such circumstances, howe
the real part of an eigenvalue is also an eigenvalue. This
be seen by adding Eq.~29! to its complex conjugate and b
noting that both the Hamiltonian matrix and the eigenvec
matrix is real. As to the real parts of the eigenvalues it w

FIG. 1. Deviations of the GDVR eigenvalues from the VBR ones~triangles!
are compared with the deviations of the eigenvalues obtained by using
transformation method from those obtained by the VBR~crosses!. The de-
viations~e! are given as the ten base logarithm of the absolute value of
differences of the eigenvalues obtained by the different methods, whilen on
the abscissa numbers the eigenvalues.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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found that they agreed with the variationally obtained eig
values~the VBR results! just as well as the eigenvalues o
tained by the transformation method.

In these calculations we used the subroutineDECRG of
the IMSL9 to find the eigenvalues of our asymmetric Ham
tonian matrices. When repeating the calculations by emp
ing the subroutineDGEEV of LAPACK10 we did not obtain
complex eigenvalues, but the real parts of the eigenva
obtained byDECRGandDGEEV, respectively, agreed to within
numerical precision.

Thus, again, one may conclude that the quadrature
proximation to the potential matrix elements in Eq.~28! is of
nearly Gaussian quadrature accuracy when the grid po
are derived by the diagonalization method. The somew
curious results observed ocassionally when employ
DECRG might be caused by algorithmical, numerical pro
lems in this subroutine.

IV. SUMMARY

For the case of standard orthogonal polynomial bases
question of accuracy of the matrix elements of the poten
energy operator derived via the transformation method
been made clear by Dickinson and Certain,4 who showed the
relation of the transformation method and the Gauss
quadrature associated with the polynomial basis employ
Little is known, however, about the accuracy of these ma
elements when a general, i.e., nonpolynomial or nonstan
orthogonal polynomial, basis is used. Here we have exten
the proof of Dickinson and Certain and shown that the tra
formation method gives matrix elements of Gaussian qua
ture accuracy even in the case of general bases. This
plains, at least partially, the success of the poten
optimized DVR method11,12 where the transformation
method is employed in deriving a DVR corresponding to
potential optimized~therefore usually not standard orthog
nal polynomial! basis functions.

In our analysis the Christoffel–Darboux identity plays
fundamental role. It has been introduced for a general b
set by replacing the general basis functions with an app
priate set of polynomials@thesn(q)’s]. Recently a semiclas
sical generalization for the Christoffel–Darboux identity h
been derived by Littlejohn and Wright.13 It is valid in the
asymptotic sense~largeN) directly ~i.e., without introducing
a polynomial basis! for general bases.

The optimal generalized DVR offers an alternative to t
DVR-like representation derivable by the transformati
method. Our numerical calculations have shown that the
timal GDVR gives results nearly of Gaussian quadrature
curacy when using grid points obtained by the transform
tion method. Obviously, the optimal GDVR contains, as
special case, the DVR derivable by the transformat
method with a standard orthogonal basis. But even for g
eral bases, the optimal GDVR becomes identical to the D
derived by the diagonalization method provided the sa
basis sets~and grid! are used in constructing the GDVR a
used in the transformation method.
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APPENDIX: PROOF OF EQS. „15… AND „16…

Consider the recurrence relations

bnsn11~q!5~q2an!sn~q!2bn21sn21~q! ~A1!

and

bnsn11~q8!5~q82an!sn~q8!2bn21sn21~q8!. ~A2!

Multiply the first equation bysn(q8), multiply the second
equation bysn(q) and add them together. Following som
rearrangement the resulting equation is

sn~q!sn~q8!5
1

q2q8
$bnsn11~q!sn~q8!

2bnsn11~q8!sn~q!

1bn21sn21~q!sn~q8!

2bn21sn21~q8!sn~q!%. ~A3!

Then simply adding the terms on the left and right side in E
~A3! one obtains the Christoffel–Darboux identity:

(
n50

N21

sn~q!sn~q8!

5
bN21sN~q!sN21~q8!2bN21sN~q8!sN21~q!

q2q8
, ~A4!

for qÞq8. The result forq5q8 is obtained by applying the
L’Hospital rule:

(
n50

N21

sn~q!sn~q!5bN21S dsN~q!

dq D
q5q8

sN21~q8!

2bN21sN~q8!S dsN21~q!

dq D
q5q8

.

~A5!

Finally, since by definition thexi ’s are the zeros ofs̃N(q)
5bN21sN(q), Eqs.~15! and ~16! follow.
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