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The method of discrete variable representatibR) is based on standard orthogonal polynomial
bases and the associated Gaussian quadratures. General basis functions correspond either to
nonpolynomial expressions or to nonstandard orthogonal polynomials. Although one cannot directly
relate any Gaussian quadrature to general basis functions, the DVR-like representation derivable
with such basis sets via the transformat{dimgonalizatiohnmethod is, as proved here, of Gaussian
guadrature accuracy. The optimal generalized DY DVR) is an alternative to and entirely
different from this DVR-like representation. Yet, when built from the same general basis functions
and the corresponding quadrature points obtained by the diagonalization method, the two
representations are found to give almost identical numerical results. The intricate relationship
between the optimal GDVR and the transformation method is discussed2008 American
Institute of Physics[DOI: 10.1063/1.162161)9

I. INTRODUCTION where

There are several ways of setting up a matrix represen-
tation for solving the Schidinger equation, say, of the vibra- Fai :Wi1/2¢; (a;) 2)
tional Hamiltonian of a molecule. One of these methods is
the method of discrete variable representatb¥R).1~* The
DVR is based on truncated standard orthonormal polynomiahlso holds. Often this method is called the transformation or
bases{$,(q)}h_g, and the corresponding Gaussian quadradiagonalization method. Its close relation to Gaussian
tures. Orthonormality means that the integralsquadrature has been shown by Dickinson and Cértain it
f§¢:‘n(q)¢n(q)p(q)dq, where the actual functional form of explains its high accuracy.
the positive weight functiop(q) and the actual values of the If {¢n(q)}N=¢ is a truncated general, i.e., nonpolyno-
limits of integration depend on the basis considered, arenial or nonstandard orthogonal polynomial, orthonormal ba-
equal to 1 form=n and 0 form#n. sis one can still use the transformation method. One can set
In the DVR the matrix elements of differential operators up Q and calculate quadrature poimtsand a transformation
are calculated exactly, whereas those of the operators whidghatrix T leading to a DVR-like representation. HoweVer,
are local in the coordinate representation, e.g., the potenti@an no longer be expressed as in Eg.and theg;’s can no
energy operator, are calculated approximately, with Gaussialonger be considered as Gaussian quadrature points associ-
quadrature accuracy. For a given number of points andted with the{¢,(q)}N_g basis. Yet, even in this case, the
weights the Gaussian quadrature gives the most accurate apansformation method is of Gaussian quadrature accuracy,
proximation to an integral. This contributes to the accuracyas shown in Sec. Il, where the proof of equivalence of the
and efficiency of the DVR method. transformation method and the Gaussian quadrature approxi-
One may calculate the quadrature pointg;,i mation, as given by Dickinson and Certaiior the case of
=1,2,..,N, the quadrature weights;; ,i=1,2,..,N, and the  standard orthogonal polynomial bases, is extended to general
matrix T transforming to the DVR by diagonalizing the ma- bases.
trix of the coordinate operator, i.e., the mat@X with ele- The representation obtained by the diagonalization
mentst,nzf§¢;(q)q¢n(q)p(q)dq.1'3'4 The eigenvalues method is not the only DVR-like representation that can be
of Q give the quadrature points. The eigenvector matriQof derived by employing the same quadrature points and gen-
is identical with the transformation matriX. Specifically, eral basis functions. The optimal generalized DVR method

the equation gives another, completely different DVR-like representation.
The question arises whether the accuracy of these different
T=7F, (1) representations are comparable when, for instance, applied to

solving the eigenvalue equation of a Hamiltonian operator.

dAuthor to whom correspondence should be addressed. Electronic maiIThe_ answer is given in Sec. Ill by consiplering simple nu-
viktor@power.szfki.kfki.hu merical examples. In Sec. IV we summarize the results.
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IIl. THE TRANSFORMATION METHOD USING N-1
GENERAL BASES Un(d)= 2 M3 dn(a). (1)
m=0 '

A. Setting the problem up
In what follows it is shown that with a suitable choice of

Consider a simple one-dimensional Hamiltonian, M the approximation
NN o2 b
H=KAV=" Gz TV, @ v v @
with a kinetic energy operatdt and a potential energy func- :V,ffnR=(MTVT ™ T)m,n (12)

tion V(q). Let{¢,(q)}h-a be a truncated general basis, or-

thonormal with respect to a positive weighting function corresponds to Gaussian quadrature approximation with the
p(q). Derive the quadrature points and the transformation Q'S as quadrature points.

matrix T by diagonalizing the matrix of the coordinate op-

erator given in thep,, basis. Then, a matrix representation

for the Schrdinger equation ofi can be written as B. Expressing the FBR matrix elements of Eq.  (12)

in terms of polynomials

hc=
(K+TVT1)C=CE, @) The coordinate operator is Hermitian and its mat@x
whereK is the kinetic energy matrix with elements given in the general bas{sp,(q)}h—g is a Hermitian matrix.
b Therefore, one can choose the unitary matfixsuch that the
Km,n:J pY(q) ¢k (a)KpYA(q) pn(q)da, (5)  matrix of the coordinate operator given in the,(q)}h_g
a basis,Qr, is real, symmetric, and tridiagonal, that is
V is a diagonal matrix, a Bo - ] ) 0
Vii=6iV(a), (6) Bo a1 B
with &;; the Kronecker-delta symbol, the superscript T . . . . .
stands for Hermitian conjugation, and thth eigenfunction Qr= . ' . . . ' ;o (13
W ,(q) is approximated as
N—1 Bn-3 an—2 Bn-2

\Pp(Q): 20 Cn,pd’n(q)- (7) 0 . . . ﬂN*Z aN-1
" with real entries. NaturallyQ and Q; have the same set,
Note that the¥ ,(q)’s so defined are orthonormal with re- {qg;}I.,, of eigenvalues.

spect to the weight functiop(q). In this representation, Let the polynomials {on(a)}h=g and Tn(q)
called a finite basis representatidfBR), the potential ma- =g, _,0(q) be defined by the equations
trix elements are approximated by
) Bn-10n(Q)=[d—an-1]on-1(q) = Bn-201-2(Q),
Vinn = f Sr(@V(a) $n(a)p(a)da n=12,..N
) (14
o_ =0,
~VEER=(TVT ), ® (@)
where VBR is the acronym for variational basis representa- oo(d)=1.
tion. Save the case of standard orthogonal polynomial bases the
The FBR of Eq.(4) can be transformed into a DVR-like entries inQy depend orN (i.e., the values otyy, By, etc.
representation: depend omN), therefore the polynomials, obtained with
differentN’s are different.
t tey= (Tt
(TKT+V)(TIC)=(T'C)E. ©) Denote the zeros of the polynomigk(q) by {x;}N ;.
The transformation leaves the eigenvalues intact; the two By relying on the recurrence relation one can derive, as
representations are equivalent in this sense. described in the Appendix as well as in Refs. 6 and 7, the
Therefore, to judge the accuracy of the DVR-like repre-Christoffel-Darboux identity and establish the equations
sentation in solving the Schdimger equation it suffices to N-1
investigate the accuracy of the approximation to the potential 2 W20 (x W20 (X)) = 5, | (15)
matrix elements in the FBR given in E¢), or that in any =
FBR, with w; denoting the weights
T4 vt - B

(MKM T+ MTVT TMT)(MC)=(MC)E, (10) [ (@ 1 .

obtained by a unitary transformatio from Eq. (4). Equa- i= dq on-1(X) | (16)
q=X;

tion (4) and Eq.(10) are equivalent FBRs. The transforma-
tion by M amounts to introducing a new basis set,andi,j=1,2,..,N. By making use of Eqg14) and Eq.(15)
{tpn(q)},’:';&, related to the original set by the unitary trans- one can also show, similarly to the treatment in Ref. 4, that
formationM: the matrixF,
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Fri=Ww on(Xi), (17
n=0,1,...N—1; i=12,..,N,

diagonalizeQ with the ith column inF corresponding to
the ith eigenvector and; corresponding to théth eigen-
value of Q7. Thus the zeros diy(q) are also the eigenval-
ues ofQq, i.e.,,x;=q;,i=1,2,..,N.

Szalay et al.

positive weight functions and require that this weight func-
tion should approach a smooth functionMs»oo. Although
neither of these is neccessary to prove the Gaussian quadra-
ture approximation property of the approximation in Eqg.
(19), they may be decisive in determining how fast the
quadrature error decreases with increadihgi.e., in deter-
mining the convergence properties of the calculations.

Since F is an eigenvector matrix of a real symmetric c. on the existence of a suitable weighting
matrix, F is an orthogonal matrix, and in addition to the function u(q)

orthogonality relation, Eq(15), the orthogonality relation
N

;1 W20 (q0)WH20 (i) = S

nm=0,1,..N—1, (18

also holds. By construction, the matrix that diagonali@as
is MT . Since we have shown that the matFixgiven in Eq.
(17) also diagonalize®) we haveMT e=F and thus Eq.
(12) may be rewritten as

b
Vin = f Ur(@V(a) Yn(@)p(a)dd

=VIER= (MTVT "M") 0= (FVF )
N

=2, Wiom(a)V(a)on(a), (19

where the superscrifit denotes transpositiow,is a diagonal

matrix with diagonal elements of unit magnitude, and it is

also assumed thaf is unitary, i.e., TTT=T'T=I with |
denoting the unit matrix of dimensidd X N. Note thatT is
unitary providedQ has no degenerate eigenvalueQlhad
degenarate eigenvalud@smight not be unitary but it could

be made unitary by orthogonalization of the eigenvector

belonging to degenerate eigenvalues.

Jolynomials

Suppose that the desiredq) function exists. Thei®+,
i.e., the matrix of the coordinate operator given in the
{yn(q)}N=5 basis, is identical to the matrix of the coordinate
operator calculated in the polynomial bais,(q)}h—g. The
eigenvalues o€ correspond to Gaussian quadrature points,
as shown below.

Consider the integral

b b
I=Lf(q)u(q)dq=fa oo(@)f(g)u(a)da, (21
[the limits of integration are those corresponding to the ini-
tial basis{q&n(q)},“]‘;&] and its quadrature approximation

N

=2, wif(a). (22
Simple arguments, that we shall recall, show that the quadra-
ture approximation in Eq(22) is exact to any polynomial
f(q) of degree less thanN If f(q) is a polynomial of
degree less thahl, then f(q)=3N"0ynon(q) and|=y,.

Due to Eq.(18) the quadrature approximation gives the exact
I. Supposef(q) is a polynomial of degree less thariN2
Then f(q)=on(9)s(q) +r(q), wheres(q) and r(q) are

of degree at mostN—1, and |
=f®r(q)u(qg)dg. Since the quadrature points are the zeros

Now, suppose that the potential energy function is giverP! @n(d) and since the quadrature approximation has been

by a polynomial of degre&. Then, form+n+K<2N,

b
fa P(@)V(a) ¥n(q)p(a)dg

N
:; Wiom(A) V(G on(g))

b
=f om(A)V(a)on(q)u(q)da, (20

a

whereas form+n+K=2N the signs of equality must be

replaced by the sign of approximately equal. The first equal-

ity is a consequence of the tridiagonality@§ .> The second

equality holds provided that there exists a weighting function

u(g) making{o,(q)}h-g orthonormalized.

shown to be exact for polynomials of degree less tRathe
quadrature approximation is exact to polynomials of degree
less than A, i.e., it is a Gaussian quadrature approximation.
Therefore, provided a suitable functiariq) exists, the
approximation in Eq(19) does correspond to the Gaussian
quadrature approximation with quadrature points obtained by
the diagonalization method. In addition, note that any further
unitary transformation of the basis merely redistributes and
scatters the quadrature error to many more matrix elements
without affecting the accuracy of the representation, e.g.,
when solving the eigenvalue problem, Efj0).
We shall argue that a functiam(q) desired does exist.
Satisfying theN(N+1)/2+ 1 equations,
n=0,1,..N—1;

b
f U(Q) (@) ool Q)G =1, 23

a

Thus, to show the Gaussian quadrature approximation

property of the approximation in E¢L9) we are left to show
the existence of a function(q) such that the polynomials
{on(q)}N-3 form an orthonormalizednormalized to unity
set and are orthogonal @y(q) with this u(g) as a weight
function.

b
L u(@)on(aq)gon(q)dg=a,, n=0,1,..N—-1; (24

b
LU(q)om(q)qanfl(q)dFO,

One may prescribe additional properties that the weight

function should satisfy. One may, for instance, restrict to

n=3,4,..N and m=0,1,..,n—3, (25
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guarantees thatu(q) is suitable, i.e., the polynomials Illl. THE TRANSFORMATION METHOD
{on(q)}N-3 become an orthonormalized set and become orAND THE OPTIMAL GENERALIZED DVR

thogonal too(q) with this u(q). Let Given a truncated, general orthonormal basis set,

{pn(A)}n-5, and a set of grid points and weights,
A .
_ NN D2E 1 {ai ,Wi}ifl, one can set upa FBR for the eigenvalue equa-
u(g)=u(q,{e; )}y D), 20 fion of A1 as
(K+FA WFNC=CE, (28)
. (N+1)/2+1
and determine the values of the parame{erﬁ“=l by whereA= F'F, andF, K, V, andC are defined in Eq<2),

using Egs.(23—~(25). We shall show that, in general, this (5, () and(7), respectively. This FBR may be transformed
sytem of equations can be solved, and a functi¢q) de- into an equivalent representation

sired does exist. We show this by proving that the opposite L
statement, namely thahere is no function () satisfying (FIKFA'+V)(F'C)=(F'C)E, (29

Egs. (23)(25), cannot be valid. called the optimal generalized DVRThe optimal GDVR is

If no function u(q) can satisfy Eqs(23—(25), then  efined, although it may not be equally efficient, with any set
these equations must contain at least one inconsistent staigr grid points and weights. It was shown to have exponential
ment. Note that the integrandgaot including the function convergencé.
u(q)] in Egs. (23)—(25) are polynomials. Were the basis functions standard orthogonal polynomi-

Were a polynomial from Eq(24) and another from EQ. s and the grid points and weights were those of the associ-
(25 identical, inconsistency would arise since, in generalgted Gaussian quadratuc®, would be equal tar, A would
ap70 and no suitablei(q) could be found. Similarly, N0 pe equal to the unit matrix, and the optimal GDVR would
suitableu(q) would exist if a polynomial in Eq(23) were  requce to the standard DVR derivable by the transformation
identical to a polynomial in Eq(25). Given the origin and  method. With general basis functions and with the corre-
definition of thea,(q) polynomials, the occurrence of such sponding grid points derived by the diagonalization method,
situations is, however, nongeneric and can be excluded fro’ﬁowever,]-‘ is not equal taT, A is not the unit matrix, and
consideration. _ . the optimal GDVR given in Eq29) does not simplify to the

Let N denote the number of different polynomials of pyR.jike representation, Eq9), obtained by the transfor-
degreek appearing in Eq(25). If N>k for a givenk held  mation method. Thus, we have two distinct representations
then any polynomial of degrdecould be written as a linear apparently employing the same basis functions and grid
combination of thesk-degree polynomials. Then, depending points. While in the GDVR one has to solve the eigenvalue
on the parity ofk, either Eq.(24) with 2n+1=k anda,  problem of an asymmetric matrix, in the transformation
#0 or Eq.(23) with 2n=k would_lead to contradiction and | ,ethod one has to solve the eigenvalue problem of a sym-
would prove that nai(q) can satisfy Eqs(23)~(25). HOw-  metric matrix. While theith element of theth eigenvector
ever, such situations, unless deliberately created, can hardlyyiained by the GDVR method is proportional to the value
occur in.practice. Indeeq, even when assuming that all thet the nth eigenfunction taken at thigh grid point® an ad-
polynomials of degreé given in Eq.(25) are different, one  yantageous property that may be used to contract the basis
obtains that set by throwing away grid points where the wave function is

known to be small, one cannot establish a similar relation-
ship concerning the eigenvectors obtained by the transforma-

(k=1)/2, tion method.
if k is odd and 3=k=<N; The FBR of the potential energy operator in the transfor-
(k—2)12 mation method involves, implicitly, an orthogonal polyno-

mial basis, the{o,(q)}h-a set, and is of Gaussian quadra-

if k is even and k=N; ture accuracy. The FBR of the potential energy operator in

N= (2N—k—1)/2, @D the optimal GDVR, however, is hard to relagxcept in the
if 2N—k is odd andN<k=2N-3: case of a standard orthogonal polynomial bagis the
’ Gaussian quadrature approximation. This suggests that the
(2N—k=2)/2, optimal GDVR might give less accurate eigenvalues than the
if 2N—k is even andN<k=2N-3; DVR-like representation derived by the transformation

method. At first glance this might be surprising, since the

optimal GDVR has been shown to be the most accurate rep-
i.e., Ny is less thark, which could be reversed only under resentation among all representations employing the same
special assumptions about the entriesQin. Therefore, the basis functions and quadrature pointsote, however, that
N(N+1)/2+1 equations, Eqs(23)—(25), are, in general, the transformation method emplogimplicitly) two different
consistent and may be solved for th{N+1)/2+1 un-  bases. Thé¢,(q)}h_g basis is used to form the matrix ele-
known parameters given in ER7) definingu(q). ments of the kinetic energy operator, while Eheﬂ(q)}ﬁ;ol

Thus, we have shown the equivalence of the transformabasis, Where;(n(q)zE,“T‘,;%,Mm,nom(q), is used to form the

tion method and the Gaussian quadrature approximation fdfBR of the potential energy operator. The optimal GDVR
the case of general bases. relies exclusively on thd ¢,(q)}n-_a basis. The optimal
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TABLE I. Eigenvalues of the Hamiltonian of E¢30) as calculated with a basis set consisting of the first 15
eigenfunctions of the Hamiltonian of E¢31) and using different matrix representations.

Transformation method GDWR VBR?

Accuraté

1 1.614895064 1.614895069 1.614894252 1.614894082
2 5.656442162 5.656442160 5.656449635 5.656437055
3 11.107339593 11.107339940 11.107378164 11.107353336
4 17.637339719 17.637339395 17.638218119 17.637771274
5 25.064086745 25.064096710 25.069886577 25.068670563
6 33.278734997 33.278733648 33.297180465 33.293463662
7 42.189692496 42.189824402 42.252156070 42.236728714
8 51.981066951 51.980962039 51.904267355 51.841299964
9 62.668918878 62.676853057 62.137428525 62.061885955
10 69.738392060 69.729540448 77.251252657 72.861434123
11 70.693718739 70.693291637 92.555156459 84.208891006
12 122.467368704 122.465864484 144.539895982 96.077734785
13 125.321983645 125.322120603 173.930211698 108.444967253
14 293.849155740 293.851435172 332.706607268 121.290394935
15 296.504025194 296.504421925 388.866395065 134.596100534

GDVR=generalized discrete variable representation.
bVBR=variational basis representation.

“Accurate eigenvalues converged up to the last digit quoted. They were obtained by comparing the results of
two VBR calculations with basis sizes 55 and 75, respectively.

GDVR and the DVR-like representation derived by theEq. (31). It follows that in the examples considered the ap-
transformation method become identical once the same baspsoximation of the potential matrix elements in EB8) is of

are employed in their derivations, since then, the mafils  nearly Gaussian quadrature accuracy when the grid points
defined by the equatioF=M'F and not by Eq(2). are derived by the diagonalization method.

A comparison of numerical results obtained by the opti- It must be noted that since the Hamiltonian matrix given
mal GDVR (using a single basisEqg. (29), with those ob- inthe GDVR, Eq.(29), is asymmetric, one, in principle, may
tained by the transformation method, Ef), tests the accu- obtain complex eigenvalues. In the sample calculation whose
racy of the approximation of the potential matrix elements inresults are presented in Table |, no complex eigenvalues were
Eq. (28). obtained. In other calculations we did obtain complex eigen-

As an example, we have calculated the eigenvalues ofalues. Then, in fact, all eigenvalues obtained were complex
the Hamiltonian, numbers having exactly the same imaginary part, whereas all

@ eigenvectors were real. Under such circumstances, however,
=— —+0g°+q*+q°, (30)  the real part of an eigenvalue is also an eigenvalue. This can
dq be seen by adding E@29) to its complex conjugate and by
in three different representations of the same dimension. Fdtoting that both the Hamiltonian matrix and the eigenvector
basis functions we used the eigenfunctions of the quartignatrix is real. As to the real parts of the eigenvalues it was
oscillator Hamiltonian,

I

o2 ' ' ' ' ' ' -
N o= 4 a2+t 2t .

HO qu q q, (31) e . . X
1 . .
that we derived by solving the Scliioger equation foH ol |

using a large Gauss—Hermite DVR. We have calculated thres *

different representations for the Sctinger equation foH r x 1
in this basis: the VBR, the DVR-like representation, E4), 2l * i

obtained by the transformation method, and the optimal
GDVR. In the GDVR we used the same grid as in the trans-
formation method and set the quadrature weights to one-4 1
(The results of optimal GDVR calculations do not depend on _
the values of the quadrature weights; see Ref.Far the
calculation of the VBR of the potential energy operator we ~®
used Gauss—Hermite quadrature. The VBR results served e+ ' ) : ) ) ' : n
a reference of comparison. 0 z 4 6 5 10 12 1 16

The numerical results presented in Table | and Fig. IFIG. 1. Deviations of the GDVR eigenvalues from the VBR oftéiangles
show that the results by the optimal GDVR method are alare compared with the deviations of the eigenvalues obtained by using the

most as accurate as those obtained by the transformati(S?,'fmsformation method from those obtained by the V@Rsses The de-
viations(e) are given as the ten base logarithm of the absolute value of the

methOd- The ?ame_has been observed When employing polyerences of the eigenvalues obtained by the different methods, wisite
nomial potentials different from those given in H§0) and  the abscissa numbers the eigenvalues.
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In these calculations we used the subroutieeRrRG of . :
GDVR and the transformation method employing a general
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Thus, again, one may conclude that the quadrature a ohn for carefully reading and commenting on the manu-

proximation to the potential matrix elements in E28) is of script.

nearly Gaussian quadrature accuracy when the grid points

are derived by the diagonalization method. The somewhaAPPENDIX: PROOF OF EQS. (15) AND (16)
curious results observed ocassionally when employing

DECRG might be caused by algorithmical, numerical prob- Consider the recurrence relations

lems in this subroutine. Bnon1(Q)=(d—ay)on(q) — Bn-10,-1(Q) (A1)
and
Bnoni1(d')=(Q" —ap)on(q’')—Bn-10,-1(q"). (A2)
IV. SUMMARY Multiply the first equation byo,(q"), multiply the second

equation byo,(q) and add them together. Following some
For the case of standard orthogonal polynomial bases theearrangement the resulting equation is
guestion of accuracy of the matrix elements of the potential 1
energy operator derived via the transformation method has ¢ ,(q)o,(q')= ——{Bnon:1(A)on(q’)

been made clear by Dickinson and Certaimho showed the q-q’
relation of the transformation method and the Gaussian _ '
. . . . Bnon+1(d")on(Q)
guadrature associated with the polynomial basis employed.
Little is known, however, about the accuracy of these matrix + Bn-10n-1(4)on(q")

elements when a general, i.e., nonpolynomial or nonstandard . ;
orthogonal polynomial, basis is used. Here we have extended Br-10n-1(A)on(A)} (A3)
the proof of Dickinson and Certain and shown that the transThen simply adding the terms on the left and right side in Eq.
formation method gives matrix elements of Gaussian quadrdA3) one obtains the Christoffel-Darboux identity:
ture accuracy even in the case of general bases. This ex-1
plains, at least partially, the success of the potentialz on(@oa(q)
optimized DVR methott*? where the transformation n=0
method is employed in deriving a DVR corresponding to the "n_ /
potential optimizedtherefore usually not standard orthogo- = Pr-1on(@on-1(9") ﬁ:N_NN(q Jon-1(9)
nal polynomia) basis functions. a-q
In our analysis the Christoffel-Darboux identity plays afor q#q’. The result forq=q’ is obtained by applying the
fundamental role. It has been introduced for a general basisHospital rule:
set by replacing the general basis functions with an appro- _; don(Q)
priate set of polynomialthe o,(q)’s]. Recently a semiclas- _ N /
sical generalization for the Christoffel-Darboux identity has nZO U”(q)an(q)_’BN_l( dg )q_q,UN_l(q )
been derived by Littlejohn and Wright.It is valid in the
asymptotic sensédargeN) directly (i.e., without introducing — By 10 (q,)(dUN—l(Q))
a polynomial basisfor general bases. NZ1EN dg 4=’ '
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