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ABSTRACT: We test several binning techniques to obtain mode-
specific final-state distributions for polyatomic reactions. Normal
mode analysis is done after an exact transformation to the Eckart
frame. Standard histogram binning (HB) and three different variants
of the energy-based Gaussian binning (1GB) are employed to obtain
the probabilities of the vibrational states. We consider the two major
issues of the polyatomic quasiclassical product analysis, i.e., (1)
rounding the classical action to the nearest integer can result in
unphysical states and (2) the normal-mode analysis can break down
for highly distorted geometries. We show that 1GB can handle issue 1
when the total vibrational energy is evaluated in the normal mode space using the harmonic approximation and both issues 1 and
2 can be solved when the total vibrational energy is calculated exactly in the Cartesian space. We found that anharmonicity in the
quantized energy levels does not have a significant effect on the final-state distributions. Quasiclassical trajectory calculations are
performed for the reactant ground-state and bending-excited Cl(2P3/2) + CH4(v4/2 = 0, 1) → H + CH3Cl reactions using an ab
initio potential energy surface. The product analysis techniques are successfully applied to the CH3Cl product molecules and
some qualitative features of the results are discussed.

■ INTRODUCTION
Rigorous quantum dynamics computations are routinely perfor-
med nowadays for atom + diatom reactions, providing state-to-
state integral and differential cross sections in excellent
agreement with experiment.1,2 Recently, polyatomic processes
have received a lot of attention as well.3−13 State-of-the-art
experimental techniques are able to probe specific vibrational
states of the polyatomic products, thereby providing deeper
insight into the mode-selective dynamics of gas-phase polyatomic
chemical reactions.13,14 The first-principles simulation of these
polyatomic reactions provides a considerable challenge to theory,
because the rigorous quantum computation of mode-specific
final-state distributions for reactions involving more than four
atoms is not feasible nowadays.15 Therefore, the quasiclassical
trajectory (QCT) method is frequently used to study the
dynamics of polyatomic processes.3−8,10,11 On the basis of recent
method developments, QCT can provide mode-specific vibra-
tional distributions for polyatomic product molecules.16,17,7

However, due to its classical nature, QCT allows unphysical
energy redistribution among the different vibrational modes;
therefore, the standard final-state assignments, i.e., histogram
binning (HB), can result in nonzero probabilities for energeti-
cally not allowed states. To incorporate the “quantum spirit” into
the QCT product analysis, the so-called Gaussian binning (GB)
procedure was proposed.18,19 GB assigns a weight for each
reactive trajectory favoring the trajectories in which the classical
vibrational actions are closer to integer values. This method has
been successfully used for diatomic products; however, for
polyatomic processes GB was impractical due to the exponential
scaling of the computational time with respect to the number of

the vibrational modes. In 2009 we proposed16 a practical method
to calculate the weight for N-atomic products using the total
vibrational energy instead of the 3N − 6 vibrational actions.
Following Bonnet and Espinosa-Garcıá,20 we call this method
1GB, because it uses only one Gaussian instead of the product of
3N − 6 Gaussians. The 1GB method has been successfully used
in recent studies on the X + CH4 → HX + CH3 (X = F, Cl, O)
[refs 16, 6, 21], (H2O)2→ 2H2O [ref 22], OH +D2→D+HOD
[refs 23, 24], OH + CO → H + CO2 [ref 25], and their
isotopologue-analogue reactions.
In the present paper we focus on the reactant ground-state and

bending-excited Cl + CH4(v4/2 = 0, 1) → H + CH3Cl(n1(a1)
n2(a1)n3(a1)n4(e)n5(e)n6(e)) reactions and test the performance
of the 1GB method for a five-atomic product molecule. We
discuss different approaches to assign normal mode harmonic
vibrational quantum numbers for polyatomic products and give
the details of a practical implementation used in this study. We
also introduce modifications of the 1GB method proposed in ref
16 and compare the vibrational distributions obtained with the
different 1GB procedures and also with the standard HB.

■ MODE-SPECIFIC VIBRATIONAL ANALYSIS FOR
POLYATOMIC PRODUCTS

The first step of the product analysis procedure is to relate
the final configuration, with Cartesian coordinates denoted by ri
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(i = 1, 2, ..., N), of the N-atomic product to normal mode dis-
placements of a reference minimum geometry (denoted as ri

eq).
There are different ways to find the reference geometry in
the Cartesian space. (1) We can initiate a gradient-based
geometry optimization procedure from ri to locate the closest
minimum without introducing significant overall rotation in the
Cartesian space. This method can be useful when the minimum
energy structure is unknown a priori and/or multiple minima
exist on the potential energy surface (PES). This is the case in
liquids and solids, where Stillinger and Weber26 used a steepest
descent method to assign configurations to a particular mini-
mum. (2) For smaller systems the relevant minimum energy
structure is usually known a priori; thus, one just needs to find the
optimal orientation of ri with respect to ri

eq. This can be done by
(a) finding the best overlap between ri and ri

eq by minimizing

∑ θ ϕ ψ|| − ||
=

C r r( , , )
i

N

i i
1

eq 2

(1)

with respect to the three Euler angles or (b) solving

∑ θ ϕ ψ× − =
=

m r C r r 0( ( , , ) )
i

N

i i i i
1

eq eq

(2)

thereby satisfying the rotational Eckart condition.27 Equation 1,
which is usually utilized in crystallography, was used in refs 7, 22,
28, and 29, whereas eq 2 is widely applied in spectroscopic
applications, e.g., ref 30. As ref 31 shows, (a) and (b) are closely
related problems.Whenmass-scaled coordinates are used in eq 1,
then matrix Cminimizing eq 1 also satisfies the Eckart condition
given in eq 2.
Practical Implementation. Because in QCT studies the

equilibrium structure of the product molecule is usually known, a
practical way to proceed is via (2). A general solution for
satisfying eq 2 was reported by Dymarsky and Kudin32 and here
we present our implementation, which could be added to any
QCTproduct analysis code to calculate mode-specific vibrational
distributions for polyatomic molecules with N nuclei, whose
center-of-mass Cartesian coordinates, center-of-mass Cartesian
velocities, and masses are denoted as ri, vi, andmi, (i = 1, 2, ...,N),
respectively.
(1) Suppose we know the equilibrium structure of the product

molecule in any orientation in the center of mass frame (denoted
as ri

eq). We perform a normal-mode analysis in ri
eq, which

provides, in the case of nonlinear equilibrium structure, 3N − 6
nonzero harmonic frequencies ωk and the orthogonal trans-

formation matrix ∈ − × ×l N N(3 6) 3 , which transforms from
mass-scaled Cartesian coordinates to normal coordinates. This
normal-mode analysis is done only once at the beginning of the
product analysis and the same reference structure and lmatrix are
used for every trajectory. For each trajectory ri and vi are rotated
to the Eckart frame corresponding to reference geometry ri

eq.
Thus, the steps discussed below must be repeated for each
reactive trajectory.
(2) We remove the angular momentum by modifying

velocities as

Ω= − ×v v ri i i
nr

(3)

whereΩ = I−1j, where I−1 is the inverse of the moment of inertia
tensor at ri and j = ∑i=1

N ri × (mivi).
(3) The matrix C which transforms to the Eckart frame is

obtained as follows:

∑= =
=

A m r r n m x y z, 1( ), 2( ), 3( )n m
i

N

i i n i m,
1

, ,
eq

(4)

= =A AA A A Aand1
T

2
T

(5)

=C U U1 2
T

(6)

where the columns of U1 and U2 contain the normalized
eigenvectors of the real symmetric matrices A1 and A2,
respectively. The Cartesian coordinates, which exactly satisfy
the Eckart conditions and the corresponding velocities are
obtained asCri andCvi

nr, respectively. Before wemove forward, it
is important to consider the fact that the sign of an eigenvector is
not well-defined; therefore, eight different C matrices exist,
which all satisfy the Eckart conditions. TheCmatrix of interest is
obtained by constructing all the eight matrices as

=C U Ua a
1 2

T
(7)

where

= − =

= = =

a a a

a a a

U U a( ) ( 1) ( ) ( , , )

1, 2 1, 2 1, 2

n m
a

n m
a
1 , 1 , 1 2 3

1 2 3

m

(8)

and we find the minimum of ∑i=1
N ∥Cari − ri

eq∥2 with respect to
a = (a1, a2, a3). Hereafter, let us denote the transformation matrix
that gives the best overlap between Cari and ri

eq as C.
(4) The normal coordinates are obtained as

∑= Δ = −
=

Q m k Nl r 1, 2, ..., 3 6k
i

N

i ki i
1 (9)

where Δri = Cri − ri
eq and similarly the momenta in the normal

coordinate space are

∑= = −
=

P m k Nl Cv 1, 2, ..., 3 6k
i

N

i ki i
1

nr

(10)

(5) The harmonic vibrational energy for each normal mode is
calculated as

ω
= + = −E

P Q
k N

2 2
1, 2, ..., 3 6k

k k k
2 2 2

(11)

(6) A noninteger classical harmonic action for each mode is
obtained as

ω
′ = − = −n

E
k N

1
2

1, 2, ..., 3 6k
k

k (12)

The integer vibrational quanta are assigned to quantum states by
rounding nk′ to the nearest integer value nk. Hereafter we denote a
vibrational state (n1, n2, ..., n3N−6) as n. We note that some of the
above steps are similar to those of previous studies.16,17 Themain
difference between the above procedure and themethod of ref 16
is in steps (1) and (3), where the present implementation is more
efficient and robust.

Binning Techniques. The standard QCT studies apply the
HB technique, where the probability of a particular vibrational
state n is

=P
N
N

n
n

( )
( )

HB
traj (13)

where N(n) is the number of products in state n from the total
number of trajectories Ntraj.
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Using the 1GB approach a Gaussian weight is defined for each
product as

β
π

=

=

β− ′ −G

p N

n

n

( ) e

1, 2, ..., ( )

p
E E En n 0{[ ( ) ( )]/2 ( )}p

2 2

(14)

where β = 2(ln 2)1/2/δ, δ is the full-width at half-maximum, and
E(0) is the harmonic zero-point energy (ZPE). Then, the
probability of n can be obtained as

=
∑ =P

G

N
n

n
( )

( )p
N

p
n

GB
1

( )

traj (15)

In this study we consider three different ways to calculate
Gp(n) by using different approaches to get the energies E(np′ )
and E(n) used in eq 14.
(1) As we proposed originally in 2009,16 one can use the

harmonic energy formulas for both E(np′ ) and E(n) as follows:

∑ ω′ = ′ +
=

−
⎜ ⎟
⎛
⎝

⎞
⎠E nn( )

1
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1
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k k
1

3 6

(17)

As we showed recently in the case of the fragments of the water
dimer,22 a possible issue of this approach is that the harmonic
normal mode approximation may fail at highly distorted
configurations and, thus, E(np′ ) may be seriously overestimated.
(2) One can also determine E(np′ ) exactly in the Cartesian

space as
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where vi,p
nr is the velocity of the pth product corresponding to zero

angular momentum as defined in eq 3 and V is the potential
energy of the N-atomic product. This second approach uses eqs
18 and 17 for E(np′ ) and E(n), respectively.
(3) Here we propose to incorporate the effect of vibrational

anharmonicity by using the second-order vibrational perturba-
tion theory (VPT2) to calculate E(n) as

∑ ∑ω χ= + + + +
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where χk,i are the anharmonicity constants, which can be nowadays
obtained routinely by ab initio program packages. Now we can
calculate the weight from the anharmonic energies E(np′ ) and E(n)
utilizing eqs 18 and 19, respectively.
Hereafter we denote 1GB approaches (1), (2), and (3) as

GB(harm), GB(harm-exact), and GB(aharm-exact), respec-
tively.

■ COMPUTATIONAL DETAILS
We have performed QCT calculations for the reactant ground-
state and bending-excited Cl(2P3/2) + CH4(v4/2 = 0, 1) → H +
CH3Cl reactions using a full-dimensional ab initio global PES.

The PES was first reported in ref 5, and a detailed description can
be found in ref 6. The PES accurately describes both the
abstraction and substitution channels, in the present study
we focus on the latter. Standard normal mode sampling was
applied to prepare the initial states CH4(v = 0), CH4(v4 = 1), and
CH4(v2 = 1), where the harmonic frequencies (corresponding to
the PES) of the v4(t2) and v2(e) bending modes are 1355 and
1560 cm−1, respectively.6 The relative orientation of the reactants
was randomly sampled and the initial distance was set to
(x2 + b2)1/2, where b is the impact parameter and x = 10 bohr.
b was scanned from 0 to 7 bohr with a step size of 0.5 or
0.25 bohr. (Note that for the substitution channel themaximum b is
only about 2 bohr. The wider b range applied in this study can
describe the abstraction reaction as well.) We have performed
computations at collision energies (Ecoll) of 12 000, 14 000,
16 000, 18 000, 20 000 cm−1 and run 5000 trajectories at each
b using 0.0726 fs integration step. At Ecoll of 14 000 and 16 000 cm

−1

we scanned b with a smaller step size of 0.25 bohr, because we
report the most detailed product analyses at these Ecoll.
The mode-specific product-state distributions for CH3Cl have

been computed using the different techniques described in the
former section. For 1GB we used a Gaussian function with δ =
0.1. The anharmonicity constants shown in eq 19 were computed

Table 1. Harmonic and Anharmonic Zero-Point Energies and
Vibrational Fundamentals (cm−1) of CH3Cl

ωa Δvb vc

ZPE 8231 (8318) −115 8116 (8203)
v3(a1) 730 (737) −16 714 (721)
v6(e) 1034 (1039) −21 1013 (1018)
v2(a1) 1358 (1390) −34 1324 (1356)
v5(e) 1502 (1500) −44 1458 (1456)
v1(a1) 2972 (3076) −103 2869 (2973)
v4(e) 3165 (3178) −139 3026 (3039)

aHarmonic results corresponding to the PES of refs 5 and 6. In
parentheses the CCSD(T)/aug-cc-pVTZ results are given. bAnhar-
monic contributions obtained by VPT2 at the MP2/aug-cc-pVTZ ab
initio level of theory. cAnharmonic results obtained as ω + Δv.

Figure 1. Schematic of the vibrationally adiabatic potential energy
surface of the Cl(2P3/2) + CH4(v4/2 = 0, 1) → H + CH3Cl reactions
showing the collision energy (Ecoll) dependence of the maximal available
internal energy (Emax) for CH3Cl at different initial states of the reactant.
The relative energies correspond to the global PES of refs 5 and 6
including harmonic zero-point energy corrections.
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by the ab initio package CFOUR33 using VPT2 at the MP2/aug-
cc-pVTZ level of theory. Note that in eq 19 we used ωk
corresponding to the PES and just χk,i were taken from direct
ab initio computations. Test computations showed that the final
results are not sensitive to the ab initio level employed. The
harmonic and anharmonic fundamental frequencies of CH3Cl
are given in Table 1.

■ RESULTS AND DISCUSSION

A schematic of the vibrationally adiabatic PES of the Cl(2P3/2) +
CH4(v = 0)→ H + CH3Cl(v = 0) reaction is shown in Figure 1.
The ground-state adiabatic barrier height is 14 046 cm−1, well
below the classical value of 15 061 cm−1.5,6 The reaction enthalpy
(ΔH0°) is 7500 cm−1, again significantly less than the vibra-
tionless endothermicity of 9087 cm−1.5,6 (All the above energies
correspond to the PES). The reaction enthalpy determines
the maximum available internal energy (Emax) for CH3Cl as

Ecoll − ΔH0° + Eint(CH4), where Eint(CH4) is the internal energy
of CH4 relative to the ZPE, i.e., 0, 1355, and 1560 cm−1 for
CH4(v = 0), CH4(v4 = 1), and CH4(v2 = 1), respectively. Because
the atomic product (H atom) cannot violate ZPE, even the
classical QCT method cannot produce CH3Cl with an internal
energy larger than Emax. However, we can still compute nonzero
probabilities for those vibrational states of CH3Cl that have
energy larger than Emax. This can happen due to the following
reasons: (1) Because the assignment of the vibrational quantum
numbers is based on rounding to the nearest integer, the upper
limit of E(n)− E(n′) is as high as the ZPE. (2) The normal-mode
analysis can break down for highly distorted geometries resulting
in an unphysical increase in the mode energies. It is clear the 1GB
approach can deal with issue 1, because large deviations between
E(n) and E(n′) result in small weights. Can 1GB handle issue 2 as
well? Do these issues result in a complete breakdown of the

Figure 2. Product vibrational distributions (showing all the product states) for the Cl(2P3/2) + CH4(v4/2 = 0, 1)→H + CH3Cl(v) reactions at collision
energy of 16 000 cm−1 obtained by different binning techniques as described in the text. The vibrational energy is relative to the ZPE of CH3Cl, and Emax
indicates the maximum available internal energy.

The Journal of Physical Chemistry A Article

dx.doi.org/10.1021/jp3044797 | J. Phys. Chem. A 2012, 116, 7467−74737470



standard HB method? We seek answers for these questions by
analyzing the CH3Cl product molecules of the title reaction.
Vibrational distributions of CH3Cl at Ecoll = 16 000 cm−1

obtained by HB and three different variants of 1GB are shown in
Figure 2. The Emax values are 8500, 9855, and 10 060 cm−1 for
reactants CH4(v = 0), CH4(v4 = 1), and CH4(v2 = 1),
respectively. HB, however, shows substantial populations above
Emax up to about 18 000, 20 000, and 20 000 cm−1, respectively.
(Note that the CH3 stretching modes are usually in the ground
state or have one quantum excitation. The overtones and
combinations of the low frequency modes have significant
populations above Emax.) This is clearly a failure of HB due to
issues 1 and/or 2. GB(harm) improves the results because the
populations and the density of the states decrease above Emax;
however, we still get many states with significant populations at
the physically not allowed region. The improvement over HB is
due to the fact that GB(harm) effectively handles issue 1;
however, GB(harm) cannot solve issue 2, i.e., the overestimation
of E(n′) due to the failure of the normal-mode analysis. In the
traditional mode-based GB approach there is no possibility to
overcome this issue. Fortunately, 1GB offers a practical way to
compensate the possible breakdown of the normal-mode
analysis, because 1GB only requires the total classical vibrational
energy of the product, which can be computed exactly in the
Cartesian space as shown in eq 18. When we use either
GB(harm-exact) or GB(aharm-exact), which calculates the
weight by comparing E(n) and the exactly determined E(n′),
the states above Emax completely vanish. Significant qualitative
differences between the GB(harm-exact) and GB(aharm-exact)
distributions are not seen, indicating that a harmonic
approximation for E(n) is satisfactory in QCT product analyses.
However, the normal-mode analysis can fail in some cases when
the actual geometry is highly distorted; thus, E(n′) can be
seriously overestimated, when it is determined in the normal
mode space. This can especially be expected for the title reaction,
because it produces vibrationally hot CH3Cl molecules. As
Figure 2 shows, most of the CH3Cl molecules are vibrationally
excited and the distributions peak around 2000−3000 and
3000−5000 cm−1 for the ground-state and bending-excited
reactions, respectively. We note that only a few trajectories
violate the ZPE of CH3Cl (see ref 6); thus, the ZPE-constrained
results would be similar to the present ones. In summary, both
GB(harm-exact) and GB(aharm-exact) provide mode-specific
distributions satisfying the energy requirements and these
advanced 1GBmethods greatly improve the standard HB results.
In Figure 3 the distributions of the CH3Cl(00n3000) states are

shown at Ecoll = 14 000 cm−1 obtained by the four different
binning methods. (n3 denotes the vibrational quanta on the
lowest-frequency mode, i.e., CCl stretch.) For the Cl + CH4(v = 0)
reaction GB(harm-exact) and GB(aharm-exact) show that
vibrational states up to v3 = 5 are populated, whereas GB(harm)
and especially HB allow excitations up to v3 = 11. The population
of CH3Cl(v = 0) is small, most of the products are formed in v3 =
2 and 3. When the reactant bending mode is excited, the product
vibrational distributions are hotter and broader with significant
populations for v3 = 1−6 and v3 = 0−7 for Cl + CH4(v4 = 1) and
CH4(v2 = 1), respectively. Because the distributions are
normalized over all the product states, we can observe that GB
methods provide more pronounced probabilities for the
overtones than HB does. In other words, when one uses HB,
the internal energy is spread among many states showing smaller
probabilities for specific vibrational states.

Cross section ratios (σb/σg) between the reactant bending-
excited (v4 = 1 or v2 = 1, but the results are similar) and ground-state
reactions are shown in Figure 4 in the Ecoll = 12 000−20 000 cm−1

range obtained by the different binning techniques. (Note that
in the case of the total cross sections HB means no binning;
i.e., all the reactive trajectories are considered with equal
weights.) As seen in Figure 4, the bending excitations enhance
the reaction substantially especially at the threshold region. At
this region HB and GB provide significantly different results,
because the σb/σg ratios are much larger when GB is employed.
At Ecoll = 12 000 cm

−1, well below the adiabatic barrier height, we
found some reactive Cl + CH4(v = 0)→H + CH3Cl trajectories;

Figure 3. Populations of the C−Cl stretching mode (v3) excited
products for the Cl(2P3/2) + CH4(v4/2 = 0, 1) → H + CH3Cl(v3)
reactions at collision energy of 14 000 cm−1 obtained by different
binning techniques as described in the text. The probabilities are
normalized over all the product states, whereas here only the (00n3000)
states are shown.

The Journal of Physical Chemistry A Article

dx.doi.org/10.1021/jp3044797 | J. Phys. Chem. A 2012, 116, 7467−74737471



however, GB gives zero weight to these trajectories, which could
be obtained due to some unphysical internal energy redis-
tribution, a well-known issue of the QCT method. At an Ecoll
close to the adiabatic barrier height (14 000 cm−1), HB and GB
provide σb/σg ratios of about 2−3 and 6−8, respectively, whereas
at as high Ecoll as 20 000 cm

−1, the σb/σg ratios are about 1.2−1.5
in the cases of both HB and GB. For the ratios of the total cross
sections the various 1GB approaches, i.e., GB(harm), GB(harm-
exact), and GB(aharm-exact), result in similar ratios, which can
be quite different from the standard HB results in the threshold
region.

■ SUMMARY AND CONCLUSIONS
We have investigated several strategies that move beyond the
standard quasiclassical product analysis. The methods were
applied to the CH3Cl product obtained by the substitution
reaction of ground-state and bending-excited CH4 with Cl atom.
Because CH3Cl has a well-known equilibrium structure, one just
needs to find a transformation, which rotates the final distorted
configuration to the Eckart frame defined by the equilibrium
geometry. We presented the details of a practical implementation
of such a transformation. We also considered three different
variants of the energy-based 1GB method to obtain mode-
specific vibrational populations. Although 1GB always improves
the results of the standard HB method, we showed that the
original implementation of 1GB as proposed by us16 in 2009
cannot deal with the possible breakdown of the normal-mode
analysis occurring at highly distorted geometries. Nevertheless,
1GB offers a solution of this issue by calculating the total
vibrational energy [E(n′)] exactly in the Cartesian space. When
one calculates the Gaussian weight by comparing the quantized
energy level [E(n)] of the given state to this exact vibrational
energy of the product, the results significantly improve and all the
states get zero probabilities, which are expected to be closed on
the basis of the available energy. Our numerical results show that
anharmonicity in E(n) does not have a significant effect on the
product-state distributions. Therefore, for practical applications
we propose to use 1GB, where the weight is obtained from
harmonic E(n) (eq 17) and exact E(n′) (eq 18).
The normal-mode analysis method and the binning

techniques described in this paper could be straightforwardly
implemented for any quasiclassical product analysis code. Here,
we successfully used the method for CH3Cl and we expect many
additional applications in the near future even for much larger
systems.
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