
CHAPTER 9
An Active Database Approach to
Complete Rotational–Vibrational
Spectra of Small Molecules

Attila G. Császár*, Gábor Czakó*, Tibor Furtenbacher*

and Edit Mátyus*

Contents 1. Introduction 155
2. Nonadiabatic Computations—Where Theory Delivers 158
3. MARVEL—An Active Database Approach 158
4. Electronic structure computations 160

4.1 The focal-point approach (FPA) 160
4.2 Ab initio force fields 162
4.3 Ab initio (semi)global PESs 163
4.4 Empirical PESs 164
4.5 Dipole moment surfaces (DMSs) 165

5. Variational Nuclear Motion Computations 165
5.1 Computations in internal coordinates 166
5.2 Computations in normal coordinates 167

6. Outlook 169
Acknowledgement 169
References 169

1. INTRODUCTION

Spectroscopy has traditionally been considered as the branch of sciences offer-
ing the perhaps most precise measurement results. As a consequence, molecu-
lar spectroscopic results are usually extremely hard to match even by the most
sophisticated nonadiabatic computational approaches based on quantum electro-
dynamics (QED). Nevertheless, experimental molecular spectroscopy, when the
aim is the determination of complete spectra, has several important limitations,
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as follows: (1) while line positions can be measured with outstanding accuracy
that is almost impossible to match by computations, line intensities and shapes
usually have much larger relative uncertainties; (2) experiments measure transi-
tions but in many application of spectroscopic results, e.g., for the determination
of temperature-dependent partition functions through direct summation [1], one
needs accurate energy levels; (3) since even for small systems the number of al-
lowed transitions is huge, it is in the billions for each isotopologue of a triatomic
species, the complete line-by-line experimental determination of a spectrum is
clearly impossible; (4) many important species and many important spectroscopic
regions are hardly amenable to experimental scrutiny or require expensive instru-
mentation, for example, even the stretching fundamentals of the triplet ground
electronic state of the CH2 radical have not been measured [2]; and (5) measure-
ment of transitions without detailed assignment is hardly useful for most practical
purposes and as the energy grows the level density increases drastically while the
clear description of energy levels using traditional simple schemes starts to fail.

As suggested herein, the best quantum mechanical computations are able to
solve or at least remedy all of the above problems. While highly specialized tech-
niques exist for few-electron systems [3], the canonical process of obtaining accu-
rate computational predictions for rotational–vibrational spectra of many-electron
systems is normally divided into two steps. First, one or more potential energy
surfaces (PESs) [4,5], and possibly property surfaces (like the dipole moment sur-
face, DMS) are obtained, based on solving the electronic part of the Schrödinger
equation on a grid including a large number of nuclear configurations. PESs are
defined as the total energy of the quantum system as a function of its geometric
variables. Property surfaces are defined similarly to PESs. Second, the PESs, usu-
ally after proper fitting, are used to solve the nuclear motion problem resulting
in a large number of eigenpairs, while the appropriate property surfaces are then
used to obtain the full spectrum.

Many approaches have been developed in electronic-structure theory for de-
termining accurate energy and property hypersurfaces [4,5]. Ideally, one would
do complete basis set (CBS) full configuration interaction (FCI) computations at
a very large number of structures employing an appropriately chosen relativistic
Hamiltonian. Of course, this is not practical and introduction of several approx-
imations is mandated. This is a field of electronic-structure theory where suffi-
ciently large experience has been acquired to allow meaningful choices to be made.
If the aim is the accurate determination of complete rotational–vibrational spec-
tra, even non-relativistic CBS FCI computations are not sufficient, effects usually
considered to be small must also be taken into account, most importantly effects
resulting from the theory of special relativity [6,7], even for molecules containing
only light atoms, and the (partial) breakdown of the Born–Oppenheimer (BO) [8,9]
approximation, especially for H-containing species. Furthermore, at least close to
dissociation limit(s) or intersections, interactions between PESs might need to be
considered, leading to additional difficulties.

For decades high-resolution rotational–vibrational spectroscopy treated nu-
clear motion in terms of near-rigid rotations and small-amplitude vibrations, re-
lying heavily on perturbation theory (PT) [10–16]. While the formulas [11,14,15]
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resulting from PT, even at second order, are often rather complex, they are easy to
program, running them is almost cost free, and they reproduce many experimental
data though only at low to medium excitation. These low-order PT approaches are
unable to yield complete molecular spectra. From the very beginning there have
been attempts to compute rovibronic spectra of polyatomic molecules by com-
putationally more intensive variational techniques. Variational nuclear motion
computations can be made, at least in principle and within the BO approximation,
arbitrarily accurate and in principle allow the determination of complete spectra.
Nevertheless, for the first-principles approach to complete rotational–vibrational
spectra to be really successful one has to utilize sophisticated procedures. This
means that one needs not only highly accurate electronic-structure techniques to
compute energy and property surfaces but also involved protocols to represent
them, and numerically efficient ways for the (nearly) variational nuclear motion
treatments. Recent developments suggest that, in favorable cases, the rovibrational
eigenvalues obtained can approach what quantum chemists call spectroscopic ac-
curacy, which is 1 cm−1 on average [17].

Neither experiments nor first-principles computations can determine the com-
plete rotational–vibrational spectra of even small molecules with the required
accuracy. It seems to us that the most practical approach to overcome most of
the difficulties is through an active database approach. This requires building two
databases linked together through a unique assignment scheme, one containing
energy levels and the other the related transitions. This way one can take ad-
vantage of the strengths of the two main sources of spectroscopic information.
Variational computations can yield all the possible energy levels, with various as-
signment possibilities, and thus all the possible labeled transitions, though with
limited accuracy deteriorating as the level of excitation increases [17]. Experimen-
tal transitions, and the energy levels obtained through an appropriate inversion
procedure, have a much higher accuracy but are limited in number even in the
spectroscopically most easily accessible regions. We do not see any other possible
route to the determination of complete molecular spectra and thus strongly advo-
cate the active database approach what we call MARVEL, standing for Measured
Active Rotational–Vibrational Energy Levels [18,19]. MARVEL requires not only
complex tools for handling information in the databases but also experimental ef-
forts to obtain and analyze high-resolution spectra of important small species and
theoretical developments that allow efficient and accurate computation of com-
plete spectra.

The fields of electronic-structure theory and variational nuclear motion com-
putations are diverse and involve a huge number of papers. Consequently, it is
impossible to review the advances in these fields. Only efforts in our group related
to the computation of complete rotational–vibrational spectra of small molecules
is overviewed and references from other groups are given only when directly rel-
evant to our own efforts.
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2. NONADIABATIC COMPUTATIONS—WHERE THEORY DELIVERS

For the smallest quantum systems, comprising perhaps up to five particles, one
can afford not introducing the separation of the electronic and nuclear degrees
of freedom, i.e., not introducing the BO approximation. For historical reasons
such computations of energy levels are usually referred to as nonadiabatic though
strictly speaking they should be called diabatic.

For three- and four-particle systems, like H+
2 and H2, sophisticated nonadia-

batic computations have been performed with specialized techniques [3,20–27].
These computations can yield rovibronic energy levels whose accuracy is limited
only by the Hamiltonian used for their evaluation. Unlike a BO treatment, nona-
diabatic computations can distinguish between certain spectroscopic characteris-
tics of the different isotopologues. Nevertheless, while nonadiabatic computations
yield energy levels in a quantitative way, the qualitative characterization of them
is somewhat difficult.

In a recent paper [23] we made an attempt to retain the notion of a PES in a
nonadiabatic treatment. This was achieved by fixing the internuclear separation in
H+

2 -like systems, a straightforward procedure in Jacobi coordinates. The resulting
energy correction to the BO energies was termed adiabatic Jacobi correction (AJC).
The AJC numerical values are considerably smaller than the well-established di-
agonal Born–Oppenheimer corrections (DBOC) [28–33], suggesting that the DBOC
might correct for more than simply the translational motion. More work needs to
be done to understand better the deviations between the AJC and DBOC correc-
tions and to see which one stands closer to the fully nonadiabatic limit.

The fully nonadiabatic treatment of few-body systems have yielded very accu-
rate energy levels and transition energies. At the limit of these calculations, when
even QED effects are considered, the energies have not only internal consistency
but are in almost full accord with the relevant results of measurements.

As to many-electron systems, corrections to the BO approximation can be ob-
tained by means of a second-order contact transformation method [28]. This in-
troduces two terms: (a) the simple DBOC, which gives rise to a mass-dependent
correction to the PES; and (b) the considerably more difficult second-order (also
called non-adiabatic) correction, which introduces coupling between electronic
states and primarily results in corrections to the kinetic energy operator. In the
most sophisticated first-principles treatments [17,34,35] allowance is made for
non-adiabatic effects though further work is required to explore the best possible
strategies for computation and utilization of this information.

3. MARVEL—AN ACTIVE DATABASE APPROACH

There are several areas in the sciences where experimentally measured quanti-
ties, with well defined uncertainties, and quantities preferred on some theoretical
ground, again with appropriate uncertainties, are decidedly distinct but relations
can be worked out between the two sets of data. Such areas include thermochem-
istry [36,37], reaction kinetics [38,39], and, of course, spectroscopy.
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In spectroscopy the relation between transitions and energy levels is linear and
exceedingly simple. To the best of our knowledge Flaud and co-workers [40] were
the first to suggest a useful procedure for inverting the information contained in
measured transitions to energy levels. Their method has been extended [18,19]
to treat all measured rotational–vibrational transitions available and obtain the
related energy levels in one grand inversion and refinement process. The active
database protocol and program developed is called MARVEL [18]. The energy
levels so obtained are considered measured as they are obtained from experiment.
The set of measured energy levels is called active in the sense of the Active Ther-
mochemical Tables approach of Ruscic [36], and implies that if new experimental
transitions become available the refinement process must be repeated resulting in
a new set of improved rotational–vibrational energy levels.

Determination of a set of energy levels and an improved set of transitions by
MARVEL is based on the following steps:

(1) Collect, critically evaluate, and compile all transitions, including their assign-
ments and uncertainties, into a database.

(2) Determine those energy levels which belong to a particular spectroscopic net-
work (SN).

(3) Within a given SN, set up a vector containing all the transitions, another one
comprising the requested measured levels, and a sparse inversion matrix de-
scribing the relation between transitions and levels.

(4) During solution of the resulting set of linear equations uncertainties in the
measured transitions can be incorporated which result in uncertainties for the
energy levels. The absolute energy levels of a given SN can only be obtained
if the value of the lowest energy level within the SN, with zero uncertainty, is
set up correctly.

The MARVEL procedure and code developed has been tested for H2
17O (Ta-

ble 9.1). H2
17O was chosen as it contains a relatively small number of accurately

measured transitions (on the order of 7000) [41–46], including a large number of
transitions on the ground vibrational state, and water is probably the single most
important polyatomic molecule whose spectroscopy on the ground electronic state
is especially relevant in a number of applications, including understanding of
the greenhouse effect on Earth. In the case of H2

17O, and indeed for all other
symmetrically substituted isotopologues of water, the transitions can be divided
unequivocally into two main SNs, para and ortho [47].

A good model must be available prior to using MARVEL in order to give
unique labels for the upper and lower states participating in the transitions.
Approximate Hamiltonians, variational computations based on PESs, and even
perturbation-resonance approaches [48] are able to provide these labels. In
the MARVEL program the normal mode labeling is used for the states, e.g.,
(n1n2n3JKaKc) in the case of water, where n1, n2, and n3 stand for the symmet-
ric stretching, angle bending, and antisymmetric stretching quantum numbers,
respectively, and the standard asymmetric top notation, JKaKc, applies for the rota-
tional states.
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The uncertainties of the MARVEL vibrational levels of H2
17O are on the order

of 10−6 cm−1 (Table 9.1). Since the complete list of vibrational states is available
from computations, it is clear that even in the experimentally most accessible low-
energy region several vibrational levels are not available from experiment.

MARVEL supplies important information both for spectroscopists and quan-
tum chemists. Running MARVEL for a transitions dataset collected from several
publications will determine whether there are any outliers in the transition set as-
sembled and whether the experimental uncertainties are realistic. This contributes
to the validation of the experimental results. The resulting energy levels can be
used for the empirical improvement of PESs and for checking existing assignments
or suggesting new ones. Execution of MARVEL for the most important isotopo-
logue of water, H2

16O, is in progress.

4. ELECTRONIC STRUCTURE COMPUTATIONS

It is useful if the energy-level database within MARVEL contains a (complete)
set of accurate rotation–vibration levels. This information also helps the assign-
ment of measured transitions. For many-electron systems the levels can only be
determined using PESs obtained from sophisticated, though approximate first-
principles techniques, like the focal-point approach (FPA) [49,50].

4.1 The focal-point approach (FPA)

A fundamental characteristic of the FPA is the dual extrapolation to the one-
and n-particle electronic-structure limits. The process leading to these limits can
be described as follows: (a) use families of basis sets, such as the correlation-
consistent (aug-)cc-p(wC)VnZ sets [51,52], which systematically approach com-
pleteness through an increase in the cardinal number n; (b) apply lower levels
of theory with extended [53] basis sets (typically direct Hartree–Fock (HF) [54]
and second-order Møller–Plesset (MP2) [55] computations); (c) use higher-order
valence correlation treatments [CCSD(T), CCSDTQ(P), even FCI] [5,56] with the
largest possible basis sets; and (d) lay out a two-dimensional extrapolation grid
based on the assumed additivity of correlation increments followed by suitable
extrapolations. FPA assumes that the higher-order correlation increments show di-
minishing basis set dependence. Focal-point [2,49,50,57–62] and numerous other
theoretical studies have shown that even in systems without particularly heavy
elements, account must also be taken for core correlation and relativistic phenom-
ena, as well as for (partial) breakdown of the BO approximation, i.e., inclusion of
the DBOC correction [28–33].

Note that the FPA can be used for more than spectroscopic applications. In fact
it has helped to redefine first-principles thermochemistry, see the HEAT (High-
accuracy Extrapolated Ab initio Thermochemistry) [63,64] and Wn (Weizmann-
n) [65] protocols and Refs. [37,66,67], for example.
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TABLE 9.1 Ab initio (CVRQD), empirical (FIS3), and experimental (MARVEL) vibrational energy
levels (in cm−1 ) of H2

17O up to 14300 cm−1

n1n2n3 CVRQD FIS3 MARVELa,b Levelsc

000 4630.367 4630.168 0.000000 279
010 1591.644 1591.346 1591.325655(43) 184
020 3145.535 3144.925 3144.980456(44) 93
100 3653.138 3653.157 3653.142275(96) 113
001 3748.115 3748.200 3748.318070(93) 150
030 4657.888 4657.007
110 5228.214 5227.816 5227.705615(386) 150
011 5320.482 5320.211 5320.250932(66) 122
040 6122.609 6121.559
120 6765.588 6764.799 6764.725615(966) 28
021 6857.887 6857.267 6857.272719(105) 78
200 7192.896 7193.186 7193.246625(193) 76
101 7238.116 7238.557 7238.713600(185) 100
002 7430.918 7431.136 7431.076115(1450) 26
050 7528.957 7527.914 1
130 8261.877 8260.780 3
031 8357.439 8356.514 7
210 8750.235 8750.000 34
111 8792.566 8792.525 8792.544310(926) 106
060 8855.488 8854.751 1
012 8983.119 8982.897 8982.869215(966) 51
140 9709.883 9708.660
041 9814.524 9813.391
070 10070.793 10070.693
220 10270.377 10269.703 12
121 10311.631 10311.179 10311.202510(926) 73
022 10502.067 10501.444
300 10584.956 10585.923 65
201 10597.244 10598.352 10598.475610(926) 100
102 10853.042 10853.561 10853.505315(966) 53
003 11011.416 11011.933 45
150 11082.442 11081.789
051 11221.331 11220.134
080 11235.025 11234.647
230 11750.948 11749.946
131 11793.487 11792.703 11792.827010(6019) 31
032 11985.407 11984.450
310 12121.917 12122.290 26
211 12132.557 12133.072 12132.992610(926) 87
160 12360.562 12360.454
112 12389.311 12389.173 17
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TABLE 9.1 (Continued)

n1n2n3 CVRQD FIS3 MARVELa,b Levelsc

090 12511.995 12510.737
013 12541.086 12541.118 12541.225510(926) 13
061 12562.935 12561.916
240 13186.424 13185.271
141 13234.029 13233.034 1
042 13428.499 13427.338 1
320 13620.792 13620.773 3
221 13631.364 13631.483 13631.499810(1019) 48
170 13640.751 13640.414
071 13807.707 13809.693 13808.273310(926) 1
400 13809.863 13810.343 25
301 13811.086 13812.195 13812.158110(926) 68

0100 13829.143 13827.954
122 13890.137 13889.483
023 14039.711 14039.317
202 14202.553 14203.479 11
103 14295.039 14296.298 14296.279510(370) 26

Total: 2308

a Values in parentheses correspond to 2σ uncertainties, in units of 10−6 cm−1. The lowest level was set exactly to zero
with zero uncertainty.

b The ranges (cm−1) of measured transitions: 0–177 [41], 177–600 [42], 500–8000 [43], 8000–9400 [44], 9711–11335 [45],
and 11365–14377 [46].

c Number of rotational energy levels corresponding to the given vibrational energy level.

4.2 Ab initio force fields

One old difficulty of nuclear motion computations for larger systems, namely the
representation of PESs, plagues applications of even the most sophisticated proce-
dures. While low-order force fields [68,69] may not provide a good representation
of the PES for systems undergoing large-amplitude motions, for many systems of
practical interest an anharmonic force field representation of the PES should pro-
vide at least the first important stepping stone to understand the complex internal
dynamics of the system at low energies.

Internal coordinate quartic force fields have been computed for relatively large
systems, e.g., for the 17-atom amino acid L-proline [70]. Nevertheless, despite the
fact that electronic-structure programs to compute analytic geometric first and
second derivatives of the energy have become available at almost any level [71–
74], to the best of our knowledge [68], complete sextic force fields in internal
coordinates are available only for a handful of triatomic systems, N2O [75–78],
CO2 [79–82], and H2O [48,59]. This is due to several factors. First, it is exceedingly
difficult to determine accurate higher-order force constants strictly from experi-
mental information. Second, force fields computed from most electronic-structure
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codes are given in rectilinear Cartesian or normal coordinates and their nonlinear
transformation to more meaningful representations involving curvilinear internal
coordinates is nontrivial [83]. Third, polynomial expansions are subject to rather
limited ranges of applicability. Fourth, quartic normal coordinate force fields give
excellent frequencies when used with VPT2 formulas, a precision of 1–2 cm−1

is not uncommon [84], but when used in variational procedures the computed
frequencies show much larger deviations from experiment. This was discourag-
ing as variational procedures render the use of somewhat complex and tedious
procedures [48,85] treating resonances present in PT treatments unnecessary. Nev-
ertheless, as shown in section 5.2, one can use internal coordinate force fields in an
exact and completely general way not only within internal coordinate Hamilto-
nians but also within Hamiltonians [86,87] expressed in normal coordinates. This
should result in a renewed interest in force fields for lower-energy (ro)vibrational
studies of systems having more than three atoms.

4.3 Ab initio (semi)global PESs

Since one cannot compute truly high quality PESs and DMSs in a single step,
one needs to build them piecewise. It is advantageous to utilize the focal-point
approach [49,50] detailed in subsection 4.1 for this purpose. In fact, it has been
employed successfully to obtain highly accurate semiglobal PESs for a number
of triatomic systems, including H2O [17,59], [H,C,N] [88], and H2S [60]. The so
far most elaborate and most successful application of FPA yielded the adiabatic
CVRQD PESs of the water isotopologues. CVRQD means that the final ab initio
ground electronic state surface includes corrections due to core (C) and valence
(V) correlation, as well as relativistic (R) and QED (Q) contributions, and it is an
adiabatic surface utilizing the DBOC correction (D) [28–30]. For purposes of illus-
tration, it is insightful to repeat the steps resulting in the presently most accurate
ab initio semiglobal surfaces of the water isotopologues, which can reproduce all
the measured transitions of all isotopologues with an average accuracy better than
1 cm−1 [17].

The CVRQD PESs of the water isotopologues are based upon valence-only
aug-cc-pVnZ [51,52], n = 4, 5, 6, internally contracted multi-reference configura-
tion interaction (ICMRCI) [89] calculations including the size-extensive Davidson
correction [90], which were extrapolated to the CBS limit. The largest correction to
the valence-only surface comes from core correlation, which should be determined
using a size-extensive technique. Nevertheless, the core correction surface of the
CVRQD PESs was determined at the averaged coupled pair functional (ACPF) [91]
level lacking strict size-extensivity. The relativistic surfaces were obtained by first-
order perturbation theory as applied to the one-electron mass-velocity (MV) and
one- and two-electron Darwin terms (MVD2) [92,93], supplemented by a correc-
tion obtained from the inclusion of the higher-order Breit term in the electronic
Hamiltonian [93]. A correction surface due to the one-electron Lamb shift has
also been determined. Consideration of the Lamb shift was shown to have con-
tributions as much as 1 cm−1 for some levels beyond 20000 cm−1 [94]. Finally, a
DBOC correction surface was obtained, at the cc-pVTZ MRCI level [17]. The un-
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TABLE 9.2 Approximate per quanta contributions (in cm−1 ) of so called small corrections to the
low-lying VBOs of H2

16Oa

Correction surface STRE BEND

MVD1 −2.8(n1 + n3) +1.4n2
D2 −0.04(n1+n3) +0.12n2
Breit −0.6(n1 + n3) −0.02n2
Lamb-shift +0.18(n1+n3) −0.11n2
Core correction +7.3(n1 + n3) −0.5n2

2
DBOC +0.4(n1 + n3) −0.45n2

a MVD1 = one-electron mass-velocity plus Darwin; D2 = two-electron Darwin; DBOC = diagonal Born–Oppenheimer
correction. Please see text for details. n1 and n3 are the stretching, n2 is the bending quantum number.

precedented precision of the CVRQD PESs in determining the vibrational levels of
water can be judged from the relevant entries in Table 9.1. The importance of the
correction surfaces can be judged from entries in Table 9.2, showing the approxi-
mate per quanta changes in the vibrational band origins (VBOs) of H2

16O.
To use the ab initio energies computed over a grid most efficiently in nuclear

motion computations we need to fit them to analytical surfaces. Fitting the surfaces
involves several delicate choices if the high quality of the underlying electronic-
structure calculations is not to be lost. Notwithstanding the importance of this step
the fitting process is not discussed here; for important details please consult, for
example, Refs. [59,95,96].

4.4 Empirical PESs

Whatever complicated procedures are employed for their determination, ab ini-
tio PESs can hardly produce transitions matching the accuracy of experimentally
determined transitions. A partial remedy to this problem is offered by the empir-
ical adjustment of the surface to best match the available experimental data in a
least-squares sense.

Ab initio PESs, like CVRQD for water, provide an excellent starting point for
the refinement of empirical PESs. The rule of thumb seems to be that the higher
the quality of the initial surface the better the resulting empirical PES. In fact the
best empirical PES for water, termed FIS3 [96], as it is a joint fitted surface for
three isotopologues, H2

16O, H2
17O, and H2

18O, utilized the CVRQD PESs as a
starting point. To assemble a reliable set of experimental rotational–vibrational
energy levels for the refinement process is far from trivial. As detailed in section 3,
it is possible to invert the directly measured transitions to energy levels and obtain
a partial set of high-accuracy levels. As to the functional form of the fit, several
choices are possible and these mainly depend on the accuracy of the starting PES.
The methods that can be used to fit PESs are basically the same as the nuclear
motion methods described in section 5, thus they need no further discussion here.
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The energy levels determined with the help of empirical PESs cannot match the
extreme accuracy of the MARVEL levels but they also provide a complete set.

Empirical PESs interpolate very well but their extrapolation potential is inferior
to those of the ab initio PESs. Therefore, even if a highly accurate empirical PES is
available, the ab initio surface must be retained as it might prove to be a better
choice for finding new transitions in a new region of the spectrum and a better
starting point for further refinement of the surface if more detailed experimental
information became available.

4.5 Dipole moment surfaces (DMSs)
Determination of first-principles transition intensities of rotational–vibrational
levels relies on knowledge of the DMS and the nuclear motion wavefunctions of
the states involved in the transition. The former can be obtained from electronic-
structure computations while the latter can be determined from a variational
solution of the nuclear motion problem. The DMS is a two- or three-component
vector function. While a lot of work has been devoted to obtaining high-accuracy
PESs and the corresponding rotation-vibration energy levels and wavefunctions
for small molecules, there is only limited experience accumulated about the de-
termination of high-accuracy DMSs. Furthermore, while empirical adjustment of
PESs is common practice, empirical adjustment of DMSs does not seem to be vi-
able, partly due to the inferior quality of the available experimental data. Accurate
measurement of the intensities of rotational–vibrational transitions in the labo-
ratory is a technically demanding task even at room and especially at elevated
temperatures. The range of intensities and their observational uncertainties are
much larger for transition intensities than those for line positions. New, high-
precision experiments have started to appear but this changes the present-day
scenario rather slowly [97,98].

Ab initio studies of the PESs of triatomic molecules [17,59,60,88] have shown the
importance of appending so-called small corrections to standard non-relativistic
valence-only ab initio predictions. So far these have not been considered for the
DMSs of polyatomic molecules. It is up to future high-accuracy computation of
DMSs and the utilization of new measurements to decide whether such corrections
have a significant effect on computed rotational–vibrational intensities making
their computation worth pursuing.

Obtaining a high-quality analytical fit to ab initio dipole data is a challenging
problem [99]. This is connected to the fact that the resulting DMS must be able
to reproduce transition intensities which vary by many orders of magnitude. Fits
using procedures proven adequate for PESs may suffer from small unphysical os-
cillations. Construction of a new DMS, including relativistic effects, is underway
for water [100].

5. VARIATIONAL NUCLEAR MOTION COMPUTATIONS

Breaking away from the traditional treatment of molecular spectra using pertur-
bative approaches, variational computation of rovibronic energy levels was intro-
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duced in the early 70s [101,102], following the prior derivation of simplified and
exact normal coordinate Hamiltonians for nonlinear [86] and linear [87] molecules.
Two routes can be followed in variational-type nuclear motion computations.
One employs Hamiltonians in curvilinear, preferably orthogonal internal coordi-
nates [103–106] offering the advantage that such Hamiltonians, with appropriately
chosen basis sets, matrix element computations, diagonalization techniques, and
PESs, can yield the complete eigenspectrum. Due to obvious dimensionality prob-
lems, this technique could only be pursued for small species, most notably for
triatomics. Recognizing the difficulties associated with the development and use
of tailor-made internal coordinate Hamiltonians, the other direction prefers to
have a unique Hamiltonian which would be the same for almost all molecular
systems. This is offered by the Hamiltonians derived by Watson [86,87] apply-
ing an Eckart frame. Perhaps the so far most elaborate use of the Eckart–Watson
Hamiltonians has been allowed by the MULTIMODE set of programs [107].

For tri- and tetratomic systems solution of the rovibrational problem was made
particularly tractable by the introduction of the discrete variable representation
(DVR) [108–115] of the Hamiltonian. Initially, the DVR was developed with stan-
dard orthogonal polynomial bases and the associated Gaussian quadratures, em-
ploying the same number of basis functions and quadrature points. DVRs based
on such basis sets, quadrature points, and weights possess remarkable properties.
The most relevant is the diagonality of the potential energy matrix V making DVR
a nearly ideal technique for nuclear motion computations eventhough the sim-
plifications introduced in the computation of V make the eigenvalues not strictly
variational. Nowadays solution strategies have started to appear to not only the
four- [116–125] but also the five- [126–128] and six-atomic [129] problems.

5.1 Computations in internal coordinates

As Refs. [116–134] testify, there are several strategies to set up matrix represen-
tations of multidimensional rotational–vibrational Hamiltonians. One of the sim-
plest ones is the following. The rotational–vibrational Hamiltonian is expanded in
orthogonal (O) coordinates [103,135] so that there are no cross-derivative terms in
the kinetic energy operator, its matrix is represented by the discrete variable repre-
sentation (D) [108–112] coupled with a direct product (P) basis for the vibrational
modes multiplied by a rotation function formed by combining the normalized
Wigner rotation functions, and advantage is taken of the sparsity of the resulting
Hamiltonian matrix whose selected eigenvalues can thus be determined extremely
efficiently by variants of the iterative (I) Lanczos technique [136]. The resulting
procedure has been termed DOPI [2,137].

A particularly important feature of internal coordinate rovibrational Hamil-
tonians is that singularities will always be present in them when expressed in the
moving body-fixed frame [138]. Protocols that do not treat the singularities in these
rovibrational Hamiltonians may result in sizeable errors for some of the rovibra-
tional wave functions which depend on coordinates characterizing the singularity,
thereby preventing their use for the computation of the complete rovibrational
eigenspectrum.
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Apart from approaches which avoid the introduction of certain singularities
during construction of the Hamiltonian [139–141], it seems that there are only a
few a posteriori strategies to cope with singular terms in rovibrational Hamiltoni-
ans when solving the related time-independent Schrödinger equation by means
of (nearly) variational techniques. Building partially on previous efforts [142–146],
Czakó and co-workers [147–149] developed a generalized finite basis representa-
tion (GFBR) strategy based on the use of the Bessel-DVR functions of Littlejohn
and Cargo [150], and several resulting implementations for coping with the radial
singularities present, for example, in the Sutcliffe–Tennyson triatomic rovibra-
tional Hamiltonian expressed in orthogonal internal coordinates. In this strategy a
non-polynomial nondirect-product basis is employed. An efficient GFBR has been
developed with nondirect-product basis functions having structure similar to that
of spherical harmonics [148]. It was shown there that the use of an FBR which cou-
ples different grid points to each basis function can be useful even if it results in a
non-symmetric representation of the Hamiltonian.

5.2 Computations in normal coordinates
The Eckart–Watson Hamiltonians [86,87] expressed in normal coordinates are uni-
versal and thus make the introduction and programming of tailor-made Hamilto-
nians for each new system exhibiting unique bonding arrangements unnecessary.
While the use of these Hamiltonians for systems having more than three atoms has
a long and successful history [151–154], their application is not without difficulties.
In particular, due to the numerical integration schemes employed for the potential,
in general it has proved to be impossible to use PESs expressed in arbitrary coor-
dinates with this Hamiltonian without resorting to some kind of an expansion of
the PES in normal coordinates, thus separating, to a certain extent, otherwise non-
separable functions. One of the best approximate techniques developed so far for
computing the matrix representation of the potential is due to Gerber [152] and
Carter et al. [154] and is called the n-mode representation.

This shortcoming has so far excluded the possibility of the exact inclusion of
general high-quality PESs in vibrational computations for systems having more
than three atoms even if they were available. Nevertheless, as shown here and
in Ref. [155] in more detail, this problem can be eliminated. To achieve this, one
needs to (a) represent the Hamiltonian using the DVR technique; and (b) apply a
formalism allowing the exact expression of arbitrary internal coordinates in terms
of normal coordinates.

To express curvilinear internal coordinates in terms of normal coordinates,
bond vectors in terms of normal coordinates are needed. A bond vector point-
ing from nucleus p to i (i, p = 1, 2, . . . , N and i �= p) in a molecule with N nuclei is
given as

rpi = C

[
ai − ap +

3N−F∑
k=1

(
1√
mi

lik − 1√mp
lpk

)
Qk

]
,

where the orthogonal matrix C describes spatial orientation, ai (i = 1, 2, . . . , N) are
the Cartesian coordinates of the chosen reference structure, and elements of lik
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TABLE 9.3 Variational vibrational band origins (VBOs, in cm−1 ) with l = 0 up to the highest
fundamental of 12C 16O2 obtained with Chédin’s [80] sextic empirical force fielda

(n1, n|l|
2 , n3)b Internalc Normald Expt.e

(0, 00, 0) 2535.4 2535.4 –
(1, 00, 0) 1285.0 1285.0 1285.4
(0, 20, 0) 1387.5 1387.5 1388.2
(0, 00, 1) 2347.3 2347.3 2349.2

a A potential energy cutoff of 20000 cm−1 was applied, as described in detail in Ref. [137].

b Standard normal coordinate notation of the VBOs for a triatomic linear molecule.

c The variational results based on a triatomic internal coordinate Hamiltonian were obtained with the DOPI algo-
rithm [137], the results are the same as in Table 9.3 of Ref. [137].

d Variational results obtained with the DEWE algorithm [155].

e Experimental vibrational frequencies taken from Ref. [80].

(i = 1, 2, . . . , N, k = 1, 2, . . . , 3N − F, where F = 5/6 if the molecule is lin-
ear/nonlinear) are the transformation coefficients between normal coordinates
and the instantaneous displacement coordinates in the Eckart frame. Bond vec-
tors are thus expressed in terms of Qk (k = 1, 2, . . . , 3N − F) and the Euler angles
(through C). Curvilinear internal coordinates, expressed as scalar and triple prod-
ucts of bond vectors, are functions of only the normal coordinates [156]. Due to
this transformation, arbitrary potentials given in curvilinear internal coordinates
can be called in a program working in the Qk (k = 1, 2, . . . , 3N − F) normal coordi-
nates.

Along these lines an efficient protocol, called DEWE has been developed [155]
which is based on the DVR of the Eckart–Watson Hamiltonians involving an exact
inclusion of potentials expressed in an arbitrary set of coordinates. The DEWE
procedure has been tested both for nonlinear (H2O, H+

3 , and CH4) and linear (CO2,
HCN, and HNC) molecules.

For H2
16O, employing the high-accuracy CVRQD PES [17,59], the lower vibra-

tional energy levels obtained with DEWE were the same, within numerical preci-
sion, as those determined with the DOPI procedure. However, unlike in the case of
DOPI, the higher bending levels, with the bending quantum number n2 ≥ 4, could
not be converged tightly. This convergence problem corresponds to the singularity
present in the Eckart–Watson Hamiltonian.

VBOs applying Chédin’s sextic empirical force field [80] are presented in Ta-
ble 9.3 for 12C 16O2 using exactly the same potential with the internal and normal
coordinate Hamiltonians. When comparison can be made, the two approaches
result in the same eigenenergies. It is also worth mentioning that for CO2 no
convergence (singularity) problems appeared, in clear contrast to the case of the
nonlinear H2O molecule.
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6. OUTLOOK

Understanding the complete rotational–vibrational spectra of small molecules is
an almost formidable task. This is partly due to the fact that complete spectra con-
tain information about billions of lines even for a triatomic species. Understanding
these spectra requires sophisticated instrumentation and experiments, involving
measurement and assignment of high-resolution molecular spectra, high-accuracy
first-principles computations, involving electronic-structure and nuclear-motion
determinations, empirical adjustments of ab initio PESs, and allowance for nona-
diabatic effects. Only by interplay of all these experimental and computational
elements can one expect that for polyatomic species the intricacies of complete
molecular spectra will be unraveled some day. It seems most advantageous to us to
combine results from experiment and theory by centering on a database approach
sketched in this report. Work along these lines is underway for the isotopologues
of water, arguably the most important polyatomic molecule.
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