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ABSTRACT                  The enteric nervous system is large, complex and independent of the central
nervous system. Its neural-crest-derived precursors migrate along defined pathways to colonize
the bowel. It has been established that signalling molecules produced by the developing
neurons and the mesenchyma of the gut wall play a critical role in the development of the
mammalian enteric nervous system. Recent studies have further characterized the roles of the
different cellular and molecular elements that are critical for enteric ganglia formation. The
application of modern neuroanatomical techniques revealed that the enteric nervous system
contains a considerable number of neuronal subpopulations. Most of our knowledge concern-
ing the functional features of the enteric neurons, e.g. chemical coding, neuronal connectivity
and electrophysiological behaviour, was derived from studies of the guinea-pig small intestine.
In light of the interspecies differences, comparison of the findings on different species is man-
datory. Consequently, the investigation of human fetal material is necessary in order to estab-
lish the basic rules of the development of the human enteric nervous system and to find the
time relation between the morphological and functional maturation, thereby permitting an
understanding of the causes of congenital malformation leading to misfunction of the gas-
trointestinal system. Acta Biol Szeged 44(1-4):3-19 (2000)
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Since the first description of the myenteric plexus (Auerbach
1864) and Meissner’s plexus (Meissner 1857), many reports
have been published on the morphological and functional
organization of the enteric nervous system (ENS). The ENS
is composed of a collection of autonomic ganglia and
associated neural connectives in the wall of the intestines
(Taxi 1965; Furness and Costa 1987; Gershon et al. 1994).
Even though the ENS is a component of the peripheral
nervous system (PNS), it is unlike any other. In contrast with
extra-enteric peripheral ganglia, myenteric ganglia lack
collagen and receive their support not from Schwann cells,
but from astrocyte-like enteric glia. In fact, the ultrastructure
of the ENS resembles that of the central nervous system
(CNS) more than that of the rest of the PNS (Boros and
Fekete 1993; Fekete et al. 1996). The most striking pecu-
liarity of the ENS which distinguishes it from the other two
autonomic divisions (the sympathetic and the parasym-
pathetic) is that the majority of enteric neurons are not
directly innervated by the brain or spinal cord. This unique
independence of the ENS enables the intestine to manifest
reflex activity in the absence of CNS input (Costa and
Furness 1976; Furness et al. 1992). The ENS can also
influence other organs. Neurons within the gut project out of

the bowel to innervate pre-vertebral sympathetic ganglia, as
well as ganglia in the gall bladder and pancreas. The ENS is
thus an independent nervous system that structurally resem-
bles the brain. The phenotypic diversity of its components,
neurons and non-neuronal (NN) cells transcends that found
in other ganglia and includes every class of neurotransmitters
found in the CNS. A correlation between the structural and
functional features of the enteric neurons was first suggested
by Dogiel (Dogiel 1896). In the late 1970s, the development
of new techniques, and particularly immunohistochemistry,
led to a dramatic increase in our knowledge of the diversity
of the enteric neurons (Furness et al. 1991). The diversity of
chemically defined and functionally differing subtypes of
enteric neurons was established in the guinea-pig, rat and pig
(Furness and Costa 1987; Costa et al. 1991; Sundler et al.
1993; Timmermans et al. 1997). It is difficult to transfer
concepts from these species to the human gut. Recently,
human enteric neurons were morphologically described and
classified through the use of different methods (Timmermans
et al. 1994; Wattchow et al. 1995, 1997; Porter et al. 1996;
Fekete et al. 1997). These results reinforced the view that
results on small laboratory animals cannot simply be extrap-
olated to humans (Hoyle and Burnstock 1989; Scheuermann
et al. 1989). The same conclusions were drawn after develop-
mental studies (Gershon et al. 1981; Brookes et al. 1991). At
the same time, clinical studies revealed that congenital
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malformations of the ENS seriously affect the gut motility,
gastric acid secretion, and water and electrolyte transport
(Okamoto and Ueda 1967). Consequently, the clinical
aspects of studies that concentrate on the development of the
human ENS are evident.

This review will focus on the morphological and neuro-
chemical changes in the cellular elements of the myenteric
plexus (MP) and the muscle coat in the human fetal small
intestine from the 10th to the 26th week of gestation. Special
attention will be paid to the histochemical and ultrastructural
features of the developing human ENS, the ultrastructural
changes in the nerve-muscle contacts and also the interstitial
cells - neuronal contacts during this developmental period.
The review will also focus on the development of the nitr-
ergic neurons. These neurons are involved in inhibitory non-
adrenergic, non-cholinergic (NANC) neurotransmission in
the ENS of various mammalian species (Stark and Szuszew-
ski 1993).

Ultrastructural features of the myenteric plexus
of the human fetal small intestine

In the electron microscope the ganglia of the MP of the
human fetal small intestine appear as very compact struc-
tures, completely surrounded by a basal lamina and isolated
from the connective tissue and blood vessels (Fig. 1). All
spaces are occupied by nervous and glial elements, consti-
tuting a dense neuropil, with a gap of 20 nm between adjacent
membranes. The compactness of the structure, the isolation
from blood vessels and connective tissue, the virtual absence
of extracellular space, and the occurrence of a dense neuropil
are reminiscent of the CNS rather than of other autonomic
ganglia. The nerve cells display a high variability in shape,
structure and size, they have a large, round or oval nucleus.
The nucleoplasm is finely granular with a  few condensations
of chromatin attached to the nuclear envelope. The morpho-
logical characteristics of the nucleus afford a consistent
criterion whereby nerve cells can be distinguished from glial
cells. Glial cells are numerous in the ganglia and the connect-
ing strands of the MP (Gabella 1972; Cook et al. 1992).

Glial cells, ultrastructurally similar to central astrocytes
and called enteric glial cells, are found in the myenteric
ganglia (Gabella 1981). Throughout their course in the gut
wall, the nerve bundles are accompanied by Schwann cells,
which partially ensheathe single fibres or fibre bundles. In the
ganglia, the nuclei of the glial cells appear to outnumber the
nuclei of the neurons by 2 or 3 to 1. The cell bodies of the
glial cells are generally smaller than those of the neurons.
The nucleus is oval with large patches of dense material
attached to the nuclear envelope. The neurons, the glial cells
and their processes are closely packed together within the
ganglia. Outside the ganglia and the large interconnecting
strands lie interstitial cells which are flattened and have long
laminar processes.

Types of neurons in myenteric ganglia

In terms of size, the enteric neurons are distributed over an
extremely wide range (Gabella 1971). The histograms of
neuron sizes vary in the different parts of the alimentary tract.
Elaborate classifications of the enteric neurons have been
produced on the basis of silver impregnation and methylene
blue studies. The best-known of them is that of Dogiel
(1896), who described three types of methylene-blue-stained
neurons according to the number, extent and branching
characteristics of the neuronal processes. More recently,
tracers such as horseradish peroxidase, Procion Yellow and
Lucifer Yellow have been injected into the myenteric neu-
rons, and it has become possible to study the morphology of
enteric ganglion cells in a highly selective way (Hodgkiss and
Lees 1983). The development of immunohistochemistry led
to a substantial increase in our knowledge of the diversity of
enteric neurons (Furness et al. 1991). It was realized that the
ENS contains a considerable number of neuronal subpop-
ulations (Gershon and Erde 1981; Furness and Costa 1982).

Conventional ultrastructural studies revealed different
types of synaptic vesicles in the enteric neurons (Baumgart-
ner et al. 1970; Gabella 1972; Wilson et al. 1981; Fekete et
al. 1995). Several kinds of vesiculated nerve processes form
synapses with intramural neurons. In the MP of humans,
rhesus monkeys and guinea pigs, three types of nerve profiles
have been described (Baumgarten et al. 1970). One type is
characterized by numerous agranular vesicles. These vari-
cosities are interpreted as cholinergic. They form typical
synaptic junctions, the majority of which are on perikarya or
somatic spines. A second type of endings contains vesicles
50 to 90 nm in diameter, with an intensely osmiophilic
granule. These endings are never found to form synaptic
contacts and are interpreted as adrenergic. Endings of the
third and most common type contain, in addition to a few
agranular vesicles, vesicles 85 to 160 nm in diameter, with
a large granule of medium electron density. These nerve
profiles are labelled p-type or peptide-containing varicosities.

An extremely puzzling observation is the occurrence of
morphological specializations in axons contacting glial cells
(Murphy et al. 1995; Fekete et al. 1997). The number of
contacts is rather high and it is very probable that each glial
cell has one or more.

The MP is situated between the layers of the muscle coat.
The muscle cells lie approximately parallel to each other,
usually forming sheet-like layers or coats. The MP can be
visualized as mesh-like laminar structures, i.e. wide and thin
ganglia spread over a surface and joined to each other by
connecting strands (Figs. 2 and 3). The mesh formed by the
ganglia and the connecting strands has a regular pattern,
which is characteristic of each segment of the alimentary
tract and to some extent also of the animal species. Whether
these patterns have any significance and whether they bear
any relation to the functional properties of the organ is
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unclear. As a manifestation of order, they pose a challenging
problem of morphogenesis and intercellular organization.

Prenatal development of the myenteric plexus
in the human fetal small intestine

Despite the high degree of complexity and its similarities to
the CNS, the ENS is derived from the neural crest (NC), the
source of all other branches of the PNS (Le Douarin 1982;
Gershon 1998). Prospective enteric NC cells emigrate from
two main regions of the neural tube: the vagal region, which
corresponds to somites 1-7, and the sacral region posterior
to somite 28. Vagal-derived ENS progenitors, which give rise
to the majority of neurons and glia of the enteric ganglia,
enter the foregut mesenchyma and migrate in an antero-
posterior direction, colonizing the entire length of the gut (Le
Douarin and Teilett 1971). Despite the detailed charac-
terization of the origin and the migratory pattern of the pre-
enteric NC (Pomeranz and Gershon 1990; Burns and Le
Douarin 1998), a number of critical question remain unan-

swered. One of the most interesting questions, concerning the
development of the human fetal ENS concerns the mecha-
nisms which control the formation of enteric ganglia in the
appropriate locations within the gut wall. Since the innerva-
tion of the mammalian gut is relatively mature at birth
(Gershon et al. 1981; Furness and Costa 1987), study of the
development of the ENS requires the use of fetal tissue. Be-
cause of the differences in the organization and function of
the enteric MP between large mammals, including man, and
small laboratory animals (Brookes et al. 1991), the rodent
cannot be used as a valid model for study of the development
of the human ENS. To establish the basic rules of the devel-
opment of the human ENS the investigation of human fetal
material is necessary. Peristalsis of the human fetal small in-
testine has been recorded from week 12 of gestation (Stach
1989), which means that intestinal transit takes place in the
fetus at this age. Migration of neuroblasts in the vagal trunk
begins in about week 5, and neuroblasts reach the rectum in
week 12 (Okomato and Ueda 1967). All these facts suggest

Figure 1. General view of the myenteric plexus in the small intestine of a 26-week-old human fetus. One nerve cell body (N) is partially
visible. A dense neuropil is apparent. dc: dense core vesicle, A: axon profile. Bar: 0.5 µm.
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that morphological and histochemical studies must be
performed as early as possible in order to gain information
on the structural organization of the human ENS. MP forma-
tion has been analyzed by means of electron microscopy and
on whole-mounts after NADH-diaphorase histochemistry
(Fekete et al. 1995). Satisfactory ultrastructural preservation
has been achieved in the 10-week-old fetal intestine. It has
been proved that most of the neuronal cells and the neuropil
are then far from mature. Most of the neural cells seem to be
neuroblasts, which form compact intramural ganglia (Fig. 4).
The nuclei are rich in both hetero- and euchromatin, and two
nuclei can often be found in one neural cell. Among the
neuronal cells, only primordial neuropil can be found at this
age (Fig. 5). Synaptic contacts between neuronal elements
are rare, although a few axosomatic synapses are observed
(Fig. 5, insert). Morphological specialization typical of a
neuromuscular junction is not distinguishable at this age (Fig.
6). Free axon terminals among intestinal smooth muscle cells
are rarely observed in the 10-week-old human fetus.

The histochemical investigations revealed neither amine-
specific fluorescence nor NADH activities at this stage of

gestation. These observations led to the conclusion that the
neuronal circuits required for integrated peristalsis were
lacking. This conclusion was in accordance with former
observations (Daikoku et al. 1975). It has been reported that
the longitudinal muscle (LM) layer develops only in weeks
10-12, and that the monodirectional (oroanal) peristalsis
begins only in weeks 27-30. At the same time, the close
proximity of the neuroblasts and myoblasts is common.
These contacts without any morphological differentiation
might be the sites of direct trophic effects between smooth
muscle cells and nerves. Reports suggesting a trophic
influence of sympathetic nerves on smooth muscle in vitro
(Chamley and Campbell 1975) allow the supposition of
similar links between the elements of the ENS and the
smooth muscle in the gut wall. The morphological changes
revealed by electron microscopy are prominent by week 18
of gestation (Fekete et al. 1995). Some neuroblasts and a
large number of mature ganglion cells can be seen in the MP
at this stage of the human fetus (Fig. 7). Neuropil occurs
among the ganglion cells and also in the internodal segments.
The axon profiles contain agranular small vesicles, and large

Figure 2. Whole-mount preparation from the small intestine of a 12-week-old human fetus after NADPHd histochemical reaction. Arrows
point to neural cell bodies within the ganglia. Bar: 50 µm.
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semiopaque neuro-secretory and dense-core granules. Axo-
somatic synapses are often detected. MPs are frequently
found in the proximity of smooth muscle cells, forming
distant and close contacts with each other (Figs. 8 and 9). The
nerve terminals appearing among the muscle cells probable
modify the contraction of the muscle cells. The existence of
a large number of mature ganglia, revealed by electron
microscopy, has been confirmed with the NADPH-diaphora-
se method (Figs. 2 and 3). Histofluorescence observations
reveal a well-developed aminergic fibre system in the MP of
the 18-week-old fetal intestine. The lack of fluorescent cell
bodies at the same time suggests the extrinsic origin of the
fetal aminergic plexuses. Although more than 20 neurotrans-
mitters may occur in the adult human intestine (Schultzberg
et al. 1980), little is known about the appearance of the
different transmitters during human fetal development.
Recent ultrastructural and immunohistochemical studies
(Fekete et al. 1997) strongly suggest that, besides the amin-
ergic profiles, cholinergic and peptidergic fibres are also
present in the neuropil of the 18-week-old fetal gastro-
intestinal system, and these transmitters are effectively able

to modulate the motor activity of the fetal intestine. By means
of neuron-specific enolase (NSE) immunocytochemistry and
electron microscopy, a changing topographic relation be-
tween the elements of the MP and the muscle coat has been
revealed in the human fetal small intestine between weeks 10
and 26 of gestation (Fekete et al. 1996). In sections of the 10-
week-old human fetal small intestine, NSE-immunopositive
aggregates of enteric neurons can be distinguished on the
outer surface of the newly-formed circular muscle (CM)
layer (Fig. 10). Throughout week 18 of gestation, the CM
provides the mechanical surface for the developing MP,
which is attached firmly to this muscle layer. Around week
18 of gestation, the mechanical points of attachment shift
from the CM to the LM layer. Concomitantly, the MP adheres
to the LM layer, while strips of CM can be easily removed.
This relocation may be accompanied by the appearance of
specific surface molecules recognized by developing neu-
rons, as shown in in vitro systems (Domoto et al. 1990). The
changing pattern of nerve-muscle contact is also reflected at
the ultrastructural level. Although both the CM and the MP
appear by week 10 of gestation, they cannot be recognized

Figure 3. Whole-mount preparation from the small intestine of an 18-week-old human fetus after NADPHd histochemical reaction. Arrows
point to neural cell bodies within the ganglia. Bar: 50 µm.
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as clearly separated entities at this stage (Fig. 6). The
elements of the MP and CM are intermingled. Neurons,
muscle cells, nerve plexuses and nerve terminals are in close
contact with each other, without an intervening basal lamina.
A similar arrangement was described by Gershon (Gershon
et al. 1981) in the developing guinea-pig small intestine. In
the absence of basal lamina, the elements of the MP can
communicate with smooth muscle cells, providing an oppor-
tunity for nerve-muscle trophic interaction. To date, however,
there is no evidence that enteric neurons are dependent on
neurotrophic support for their survival during development
(Ward et al. 1994). Nevertheless, there is evidence that the
number of neurons, the density of the MP, and the average
neuronal size are greater in areas where the smooth muscle
layers are thicker (Gabella 1989). Intestinal smooth muscle
has also been found to promote directional outgrowth from
sympathetic ganglion explants in co-culture (Gintzler and
Hyde 1983). The specific nerve-muscle interaction is reflec-
ted morphologically in the interdigitation of cellular pro-

cesses which provide the cellular surface for the mutual
metabolic activities. Desmosome-like contacts at the same
time indicate the mechanical coupling between the devel-
oping CM layer and the MP. From week 18 of gestation
onwards, the developing MP becomes increasingly en-
sheathed by different kinds of non-neuronal cells, collagen-
filled spaces and basal lamina (Fekete et al. 1997). Mean-
while, new contacts are formed between the MP and the LM
layer. Although some of these contacts appear permanent or
at least long-lasting, intimate contacts between the MP and
any part of the muscularis externa have practically disap-
peared by week 26 of gestation. Evidence has been provided
that the microenvironment from which the neurons originate
is critical in determining the ultimate pathway of differ-
entiation (Le Douarin and Teilett 1971). The sequential
appearance of the various types of enteric neurons (Gintzler
and Hyde 1983) and the sequential changes in the nerve
muscle contacts may be essential for morphogenesis or, more
generally, for the functional maturation of the external

Figure 4. Neuroblasts (NB) and ganglion cells (G) compose a loose myenteric ganglion (g) in the gut wall of a 10-week-old human fetus. Bar:
1 µm.



9

Development of the myenteric plexus

muscle coat and the interposed MP.
Recent electron microscopic and immunocytochemical

investigations (Fekete et al. 1997) revealed two distinct types
of NN cells in association with the developing MP. Although
they both appear together around week 10 of gestation, their
distributions already differ greatly by around week 14 of
gestation. Two classes of morphologically distinct NN cells
were found around the primordial ganglia in the 10-week-old
human fetal intestine, when neither the MP nor the LM layer
are well developed yet. There is a gradual change in the
distribution of the NN cells during the fetal period. In week
10 of gestation, the two distinct types of NN cells, one
spindle-shaped and the other with electron-dense cytoplasm
and branching processes, are intermingled with the neuro-
blasts in the outer compartment of the intestinal wall. In week
12 of gestation, the spindle-shaped cells are frequently
interposed between the MP and the LM layer, while in week
14, cells in this topographical position have long cytoplasmic
processes and large, ovoid nuclei, rich in heterochromatin.

NN cells with abundant surface caveolae and several short
processes at the same stage are inter-connected with each
other and with the ganglionic cells. Apart from these two
distinct cell types, no NN cells are seen around or within the
developing ganglia until week 17 of gestation. By this stage,
the cells originally interposed between the developing
ganglia and the muscle layer seem to change the topo-
graphical distribution and their slender processes penetrate
deeply into the ganglia (Fig. 11). At the same time, some
other NN cells appear in the extraganglionic space and their
long, intervening processes definitely encapsulate the ganglia
(Fig. 12). The presence of the highly ordered 10 nm thick
filaments in some of these processes resembles the situation
for the interstitial cells of Cajal (Thuneberg 1982). The other
well-pronounced morphological change noticed in the 17-
week-old fetuses is the appearance of the char-acteristic
cellular networks in the vicinity of the MP (Figs.13 and 14).
The ultrastructural features of the cells building these
networks resemble those of the cells surrounding the primor-

Figure 5. Simple neuropil (NP) exists among intestinal neurons in the 10-week-old fetus. Nc: nerve cell. Bar: 1 µm. Insert. S: axosomatic
synapse; dc: dense core vesicle in the soma; MT: microtubules. Bar: 0.5 µm.
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dial ganglion cells, although their different origin cannot be
excluded. The embryonic origin of these early-appearing
cells in the human fetal intestine must be further investigated.
It can be concluded, however, that the two populations of NN
cells that appear before week 10 of gestation are among the
first differentiated cells in the human fetal gut wall. They
appear together with the primordial ganglion cells, long
before the formation of the LM (Fekete et al. 1995). The
random distribution of the neuroblasts and the presumptive
NN cells at this early stage of development suggest that the
neurons and the NN cells appear and develop together during
the formation of the MP in the human fetal small intestine.
These cells provide the first morphological elements of the
ganglionic microenvironment and consequently play their
role in the mechanical support, isolation and nutrition for the
developing ganglia. In the subsequent development, when an
array of enteroglial cells and different classes of ICCs appear
around and within the MP, these early-appearing cells might
be replaced by cells differentiating later in the intestinal wall.

The appearance, distribution and some histochemical
features of NN cells have also been studied by means of S-
100 protein and GFAP-immunocytochemistry between

weeks 10 and 17 of gestation. In addition, double-labelling
immunocytochemistry using antibody raised against the
constitutive isoform of nitric oxide synthase (bNOS) in
combination with an S-100 protein antibody has been applied
to investigate the morphological relations between the NN
cells and the nitrergic neurons in the developing gut wall.
Light microscopic immunocytochemical techniques also
revealed the two distinct types of NN cells of a glial pheno-
type and/or glial origin association with the developing MP
(Fekete et al. 1997). They appear together around week 10
of gestation, but their distributions already differ consid-
erably by around week 14 of gestation. Single cells with
GFAP immunoreactivity are clustered to one side of the MP
in the vicinity of the LM layer (Figs. 15, 19 and 20), while
the cells with S-100 protein immunoreactivity are widely
distributed in the intestinal wall and frequently form mul-
tilayered cellular networks both in the MP and in the submu-
cous plexuses (Figs. 15, 17 and 18). On the basis of these
results and other data (Ferri et al. 1982; Jessen and Mirsky
1983; Kobayashi  et al. 1989), it  can  be concluded that two
main populations of glial cells, one expressing S-100 protein,

Figure 10. Cross-section of paraffin-embedded human embryonic small intestine at the week 10 of gestation, immunolabelled for neuron-
specific enolase. Aggregates of enteric neurons (arrows) are situated on the outer surface of the circular muscle layer (cm). Arrowheads
indicate the internodal segments. Bar: 50 µm.

Figure 6. Smooth muscle cells (Mc) are in close contact with nerve cell bodies (gc) in the gut wall of a 10-week-old human fetus. Bar: 1 µm.

Figure 7. Ganglion cells (gc) and axosomatic synapses (arrows) in the myenteric plexus of an 18-week-old human fetus. L: lysosome. Bar: 0.5
µm.

Figure 8. Close (arrow) and distant (arrowhead) neuromuscular contacts in the jejunum of an 18-week-old human fetus. m: muscle cell. Bar:
0.5 µm.

Figure 9. An electron micrograph showing extensive connections between the ganglion cell (gcp) and a muscle cell process (mp) from the
circular muscle layer in the small intestine of a 14-week-old human fetus. Bar: 0.5 µm. The inserts show gap junction (gj) and adherent
junction (d) between circular smooth muscle myoblast and nerve cell membranes (np). Bar: 0.2 µm.
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Figure 12. Overlapping processes of different NN cells between the
longitudinal smooth muscle layer (LM) and the myenteric ganglia
(ggl). Asterisks indicate the collagen-filled space between non-
neuronal and smooth muscle cells. Bar: 0.3 µm.

and the other GFAP immunopositivity, appear within and/or
around the MP at the very beginning of ganglionic
morphogenesis. Thus, these cells provide the first mor-
phological elements of the ganglionic microenvironment,
necessary for the ganglionic morphogenesis. As glial cells,
they might be involved in providing the mechanical support,
isolation and nutrition for the developing ganglia. In the
subsequent development or in the mature ganglia, enteroglial
cells are mostly found within the ganglia. In other locations,
they might be replaced by cells differentiating later in the
intestinal wall.

Nitrergic neurons in the developing human
small intestine

Nitric oxide (NO) research has expanded explosively in the
past 10 years. There is growing evidence indicating the
presence of abnormalities in the NO system in several
pathological conditions (Stark and Szurszewski 1993).
Changes in the density of NO-producing nerves, altered NO
production and changes in smooth muscle cell sensitivity to
endogenous NO could play  roles in the pathophysiology of
several neuromuscular disorders of the intestine. Alterations
in muscular and neuronal NO production in the intestine
result in sustained non-peristaltic contractions such as those

Figure 11. Extended thin processes (arrowheads) of non-neuronal
cells penetrating into the ganglia (ggl) in the small intestine of the
17-week-old human fetus. A spindle-shaped cell (asterix) outside the
capsule sends a process (arrows) to the longitudinal muscle layer
(LM). Both fibroblast-like and spindle-shaped cells in a collagen
setting (circles). CM: circular muscle layer. Bar: 1 µm.
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observed in patients with Hirschprung’s disease. Hyper-
trophic pyloric stenosis in infants has also been found to be
associated with a defect of NOS in the ENS (Vanderwinden
et al. 1996). Hirschprung’s disease and pyloric stenosis are
both regarded as developmental malformations of the ENS,
which has led to the implication that NO plays some role in
the normal development of the ENS. Although the nature of
this role is not clear, the trophic effect of NO has recently
been reported (Ogura et al. 1996). Pharmacological and
physiological studies have provided evidence that NO is
involved in NANC relaxation of the gastrointestinal tract
(Bult et al. 1990; Li and Rand 1990; Costa et al. 1991;
Moncada and Higgs 1993; Sanders and Ward 1992). Follow-
ing electrical field stimulation of NANC nerves, the inhi-
bition of relaxation by L-arginine analogues, which are

known to be inhibitors of NO synthesis, has led several
authors to conclude that NO is involved in inhibitory NANC
neurotransmission in the ENS of various mammalian species
(Stark and Szuszewski 1993). There is pharmacological and
physiological evidence that, in the normal human jejunum,
exogenous NO evokes membrane hyperpolarization and
inhibits mechanical activity in the CM (Stark et al. 1993).
The presence of constitutive NOS in peripheral gut neurons
was first identified through the use of immunohistochemical
techniques (Bredt et al. 1990). Substantial activity was
observed in the cell bodies and nerve fibres within the MP
of the rat duodenum. Others have also demonstrated nitrergic
nerves in different animal species (Costa et al. 1991; Llew-
ellyn-Smith et al. 1992; Schmidt et al. 1992; Timmermans et
al. 1993). The enzymic reduction of nitroblue tetrazolium to

Figure 14. Higher magnification of the cellular network formed
around the myenteric ganglia. Arrows point to adherent junctions
between non-neuronal cells; asterisks indicate caveolae. Bar: 0.5 µm.

Figure 13. Cellular network (asterisks) formed by NN cells around
the myenteric plexus (MP) at week 17 of gestation. Bar: 1 µm.
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Figure 15. Immunostaining for S-100 protein in cryostat sections of human fetal small intestine in week 17 of gestation. Cells with S-100
immunoreactivity are distributed along the myenteric plexus (large arrowheads), within the circular muscle layer (arrows) and in the inner
(asteriks) and outer (arrowheads) submucosal plexuses. Bar: 72 µm.

Figure 16. Immunostaining for GFAP in a cryostat section of the human fetal small intestine in week 17 of gestation. Immunoreactivity
(arrowheads) was restricted to the side of the myenteric ganglia adjacent to the longitudinal muscle layer (asterisks). Bar: 44 µm.

Figure 17. Immunostaining for S-100 protein of a whole-mount preparation of human fetal small intestine in week 17 of gestation. Cells
with S-100 protein immunoreactivity (arrowheads) interconnect and form a network in the plane of the myenteric ganglia (arrows). Bar: 35
µm.

Figure 18. Immunostaining for S-100 protein of whole-mount preparations of human fetal small intestine in week 17 of gestation. Cells on
the surface of the submucosal plexus interconnect (arrows) and form a network. Bar: 30 µm.

Figure 19. A higher magnification photograph of GFAP immunostaining in a cryostat section. CM: circular muscle layer; LM: longitudinal
muscle layer; arrows point to the myenteric ganglia, and arrowheads to the GFAP reaction. Bar: 45 µm.

Figure 20. Immunostaining for GFAP in whole-mount preparations of human fetal small intestine in week 17 of gestation. Immunopositive
cells (arrowheads) appear to be separated from each other and from the immunopositive plexuses (arrows). Bar: 40 µm.
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a water-insoluble dye in an NADPH-dependent manner has
long been the basis of a specific neuronal tissue histochem-
ical marker. This NADPH-diaphorase activity has been
demonstrated to colocalize with NOS in the brain and
peripheral neuronal tissue (Dawson et al. 1991; Hope et al.
1991; Timmermans et al. 1993). Sequential application of
NOS immunocytochemistry and NADPHd histochemistry in
the human fetal small intestine revealed that the distributions
of neuronal NOS and NADPHd are identical (Figs. 21 and
22). NADPH-diaphorase staining has therefore provided a
useful tool with which to investigate the distribution of the
nitrergic neurons during prenatal morphogenesis (Timmer-
mans et al. 1993). In all gut regions investigated, i.e. the
stomach and the small and large intestines, most of the NOS-
immunoreactive (NOS-IR) or NADPHd-positive neurons are
located in the MP. In the small intestine and colon, the outer
submucous plexus accounts for only about 2% of the NOS-
containing neurons, whereas the remaining intrinsic enteric
neurons capable of synthetizing NO are located in the MP.
Comparable to the situation in the guinea-pig intestine
(Young et al. 1992), significant regional differences in the
density of NOS-containing neurons can be observed between
the small intestine and the colon. The latter contains about
2.0 to 2.5-fold more in both the outer submucous plexus and
the MP. The near-absence of nitrergic neurons from the inner
submucous plexus indicates that, in larger mammals, includ-
ing humans, the two submucous plexuses have distinct
functions (Timmermans et al. 1990; Crowe et al. 1992).
NOS-IR varicose and non-varicose fibres are found within
the three ganglionic nerve networks of the small intestine. As
in the guinea-pig small intestine (Costa et al. 1991), a

considerable number may be derived from submucous or
myenteric interneurons. The dense NOS-IR fibre pattern in
the outer muscle layer of the fundic and antral parts, in the
pyloric sphincter and in the intestinal CM layer provides
strong morphological support for a mediator role of NO in
NANC inhibition of the gastrointestinal smooth muscle. The
majority of these nerve fibres are presumably processes of
motor neuronal cell bodies located in the MP. In the small
intestine of the 2-month-old female, it has been established
that NOS-IR nerve fibres progress from the outer submucous
plexus into the most luminal part of the CM layer. Therefore,
it seems likely that, in man as in the pig (Timmermans et al.
1993), this plexus is involved in NANC-mediated relaxation
of gastrointestinal smooth muscle. The hypothesis that the
outer submucous plexus is involved in the inhibitory inner-
vation of the circular smooth muscle layer in the human gut
can be correlated with an earlier report concerning the adult
human colon, where VIP-ergic projections were described as
running from the outer submucous plexus to the CM (Do-
moto et al. 1990), and with a study of the canine colon which
provided electrophysiological data on submucous motor
neurons innervating the CM (Sanders and Smith 1986).
Detailed analysis of the inhibitory junctional potentials in the
human jejunum seems to indicate that NO is not involved in
the initial rapid hyperpolarization, but rather mediates the
second part of the electrical response (Stark et al. 1993).
Therefore, it is unlikely that NO is the only substance
involved in nerve-mediated inhibition in the human ENS.

Other putative NANC neurotransmitters in the gut are
ATP (Burnstock et al. 1970; Burnstock 1982) and VIP (Goyal
et al. 1980; Furness and Costa 1982; Makhlouf 1982).

Figure 21 and 22. Paired micrographs of the myenteric plexus of the developing human small intestine (2 months postnatally) after sequential
application of NOS immunocytochemistry (Fig. 21) and NADPHd histochemistry (Fig. 22). The distributions of neuronal NOS and NADPHd
are identical. Bar: 40 µm.
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Colocalization of VIP and NOS has been detected in nerve
fibers of the taenia in the guinea-pig caecum (Furness et al.
1992). In man, in situ hybridization has demonstrated VIP-
mRNA in the ganglion cells of the upper gut at 9 weeks of
gestation, and VIP-IR enteric neurons have been observed
from 15 to 18 weeks of gestation (Li and Rand 1990; Facer
et al. 1992). Although immunocytochemistry in this study has
revealed an extensive VIP-ergic fibre pattern in the gangli-
onic nerve networks and muscle layers, immuno-reactive
nerve cell bodies have been seen only infrequently, which
might result in part result from the lack of colchicine pre-
treatment or from a too low endogenous level. These neurons
are distinct from NOS-IR neurons. On the other hand, the
presence of VIP-ergic baskets around the myenteric NOS-IR
neuronal aggregates in the small and large intestines of 21 to
26-week-old fetuses may argue in favour of the presynaptic
action of VIP (Huizinga et al. 1992). The absence of NOS
immunoreactivity and NADPHd activity from the smooth
muscle fibres of the examined regions of the human gut does
not lend support to the view (Grider et al. 1992) that NOS is
produced in the gastrointestinal smooth muscle cells in
response to putative inhibitory neurotransmitter VIP.

In the canine colon (Ward et al. 1994) and guinea-pig
small and large intestines (Costa et al. 1991; Furness et al.
1992; Young et al. 1992), the great majority of NOS-IR
neurons have been morphologically classified as Dogiel type-
I neurons. Eighteen to 26 weeks after conception, NOS-IR
or NADPHd-positive nerve cell bodies in whole-mounts of
the developing human small intestine all have a round to oval
appearance. The processes issuing from these cell bodies
have only been traced over short distances, not allowing an
unambiguous morphological identification. At a later stage
of development, NOS-IR neurons with short processes
display the Dogiel type-I morphology (Stach 1980), whereas
others have both short and long processes. The particular
distribution of NOS-IR fibres within the ganglionic plexuses
and the muscle layers, together with the variety of cell sizes
and shapes of the NOS-IR perikarya, are indicative of the
existence of distinct NOS-containing neuron populations
within the developing human ENS. As in the guinea-pig ENS
(Costa et al. 1991), these neurons may act either as inter-
neurons or as motorneurons.

NN cells such as the interstitial cells of Cajal (ICCs) have
recently been postulated as another source of NO in relation
to NANC-mediated relaxation (Daniel and Berezin 1992).
VIP-ergic fibers have been found to innervate the ICCs
(Berezin et al. 1990). The prospect of these fibres being
capable of stimulating NO production in these or other NN
cells, thereby indirectly exerting a relaxing effect on the
smooth musculature, is an intriguing one, since it would
mean that alternative mechanisms for inhibitory transmission
exist in the ENS. The small NOS-IR and NADPHd-positive
cells within the ganglia and nerve strands of the MP and in

the CM layer are difficult to classify as enteric neurons. The
overall morphological appearance, their extremely small size,
and the fact that they do not stain for general neuronal
markers such as PGP 9.5 and NSE favour an NN origin. They
may be distinct types of ICCs (Thuneberg 1989) or mac-
rophage-like cells (Mikkelsen et al. 1985, 1988) or glial cells
(Aoki et al. 1991; Simmons and Murphy 1992).

Recent publications indicate the importance of the inter-
relationship between nitrergic neurons and astrocytes (Agullo
et al. 1995; Murphy et al. 1995). There is evidence suggesting
that glial cells serve as a potential reservoir of L-arginine
(Kerwin and Heller 1994) and also as a main target of NO
(Murphy et al. 1995). A double-labelling immunocyto-
chemical method revealed a close morphological relation
between NOS-IR fibres and S-100 protein-IR cells in the
developing human fetal small intestine (Fekete et al. 1997).
NOS-IR varicosities on the glial cell surfaces might function
as communication sites between glial cells and nitrergic
neurons. Although the nature of this communication is not
clear, the glial cells closely related to nitrergic nerves might
directly benefit from the trophic effect of NO, which has
recently been reported (Ogura et al. 1996).

General conclusions from developmental
studies and directions for further research

Evidence has been provided that the microenvironment from
which neurons originate is critical in determining the ultimate
pathway of differentiation. The sequential appearance of the
various types of enteric neurons and NN cells suggests a
changing microenvironment within the intestinal wall at the
different stages of embryonic development. On the basis of
ultrastructural and immunocytochemical studies, it was
concluded that the period between week 10 and 18 of
gestation is of paramount importance for both the morpho-
logical and functional maturation of the ENS. Several
important questions regarding the nature of the signals that
control the morphogenesis of the ENS remain unanswered.
The development of methods to isolate relatively pure
populations of ENS progenitors from the mammalian and
avian fetal gut has already resulted several groups studing the
mechanism of action of purified neurotrophic factors. Such
studies will answer important questions regarding the normal
and pathologic development of the ENS, and hence may
promote the link between theory and clinical practice.
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