Response of cucumber (Cucumis sativus L.) seedlings to exogenous silicon and salicylic acid under osmotic stress

Seyyed Reza Jafari1*, Seyyed Mohammad Javad Arvin2, Khosrow Manoochehri Kalantari1

1Department of Biology, Shahid Bahonar University of Kerman, Kerman, Iran, 2Department of Horticulture, Shahid Bahonar University of Kerman, Kerman, Iran

ABSTRACT This study investigates the role of 1.5 mM silicon (Si) and 10 µM salicylic acid (SA) singly or in combination, in inducing cucumber seedlings tolerance to osmotic stress (15% PEG). Osmotic stress reduced shoot fresh and dry mass (SFM, SDM), shoot K+ uptake and leaf area (LA) and increased malondialdehyde (MDA), hydrogen peroxide (H2O2), and ion leakage (IL). Under osmotic stress, Si, SA and Si+SA increased LA, SFM, SDM, relative water content, total phenolic compounds, anthocyanins, flavonoids, shoot K+ and phenylalanine ammonia lyase (PAL) activity. In all cases the effect of Si+SA was more pronounced. Moreover, Si, SA and Si+SA reduced MDA, H2O2, ion leakage, proline and other aldehydes, under osmotic stress. Meanwhile, under osmotic stress, Si or SA improved seedling performance by enhancing antioxidant enzymes activity, but the better performance of the seedlings under osmotic stress treated with Si+SA was not associated with further enhancement of antioxidant enzymes activity. However, Si+SA treatment significantly increased non-enzymatic antioxidants, total phenolic compounds, anthocyanins, flavonoids, and Si, K+, Ca2+ content in shoot and also PAL activity that might have contributed to higher tolerance of seedling to osmotic stress.

KEY WORDS antioxidant enzyme cucumber osmotic stress silicon salicylic acid

Introduction

The water deficit caused by drought adversely affects growth, membrane integrity, pigment content, osmotic adjustment, water relations, and photosynthetic activity. Also, this stress is responsible for an average yield loss of more than 50% in the major crops (Praba et al. 2009).

In plants, drought stress alters many morphological, physiological and metabolic processes such as reduced growth, stomatal closure and photosynthesis inhibition (Moussa 2011), among others peanut (Celikkool et al. 2010) and chickpea (Sohrabi et al. 2012). Moreover, stomatal closure may induce over-reduction of photosynthetic electron chain and increases production of reactive oxygen species (ROS) such as superoxide anion (O2-) which lead to the formation of H2O2, OH-and other ROS (Iannone et al. 2009). Plant performance under stress conditions depends on the balance between the harmful effect of stress and a wide variety of protective and repair processes (Caldwell et al. 2007). In the absence of effective mechanisms which remove or scavenge free radicals, they can seriously damage plant by lipid peroxidation, protein degradation, breaking of DNA, and cell death (Tian and Li 2006). Plants protect cellular and sub-cellular system from the cytotoxic effects of active oxygen radicals with antioxidative enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate-dependent peroxidase (APX, EC 1.11.1.11), and guaiacol-dependent peroxidase (GPX, EC 1.11.1.7) as well as non-enzymatic compounds, ascorbate, glutathione, phenolics, anthocyanins and flavones compounds, which normally maintain ROS balance within the cell (Ashraf et al. 2010). The application of chemicals such as silicon (Si) (Al-Aghabary et al. 2004; Zhu et al. 2004; Liang et al. 2006) and salicylic acid (SA) (Daneshmand et al. 2009; Hayat et al. 2010) can ameliorate the impairing effects of osmotic stress.

Si is recognized as a quasi-essential for the growth of higher plants (Epstein and Bloom 2003). Plants typically absorb bio-available silicon as a silicate—generally known as monosilicic or orthosilicic acid. Silicon is deposited as silica in the plant cell walls, improving cell wall structural rigidity and strength, plant architecture and leaf erectness. Si fertilization may improve yield, disease resistance, and tolerance to stresses such as cold, drought, and toxic metals (Romero-Aranda et al. 2006; Balakhmina and Borkowska 2013; Ma and Yamaji 2008; Zhu et al. 2004). It has been reported that Si applied by external foliar treatments or hydroponic supplementation has beneficial effects on plant growth and plays an important role in tolerance of plants to environmental stresses (Ma and Yamaji 2008). Gunes et al. (2007) reported that Si alleviated sodium and boron toxicity in spinach (Spinacia

Submitted Sept 30, 2014; Accepted Febr 28, 2015
*Corresponding author. E-mail: Seyydezaf13@gmail.com
oleracea L.) and tomato (Solanum lycopersicum L.) plants by reducing oxidative membrane damage. In sorghum (Sorghum bicolor Moench), plants grown in pots applied with silicon had higher relative water content and dry materials (Hattori et al. 2005). Reduced oxidative damage due to the addition of Si under saline conditions was also reported in barley (Liang et al. 2003, 2005) and cucumber (Zhu et al. 2004). Si increases the activity of antioxidative enzymes, thus mitigating the stress and improving the plants growth (Al-Aghabary et al. 2004), and/or improving plasma membrane H+-ATPase activity in plants treated with NaCl (Liang et al. 2006). It is suggested that Si may contribute to affecting membrane lipid composition and maintaining optimal membrane fluidity of plants stressed. Moreover, Si maintains the integrity, stability and functioning of plasma membranes in salt-stressed barley (Liang et al. 2006). In addition, in Sorghum the Si application can affect stomatal conductance through modification of plant water status but not through any physical changes (Hattori et al. 2005). The beneficial effects are also attributed to Si deposition in cell walls of leaves, stems and hulls that protect plants against multiple abiotic and biotic stresses (Epstein 2009).

For example, deposition of Si in the culms, leaves and hulls of rice enhances the strength and rigidity of cell walls and decreases transpiration, increasing the resistance to lodging, low and high temperature and drought stresses (Ma and Feng 2006).

Salicylic acid (SA, 2-hydroxybenzoic acid) is a phytohormone which influences a range of diverse processes in plants, including seed germination, ion uptake and transport, membrane permeability, and photosynthesis (Simaeia et al. 2011). Increasing evidence has shown that exogenous SA improves plant adaptation to stresses by various mechanisms such as improved photosynthetic capacity (Arfan et al. 2007), maintaining the stability of membranes and thereby improving the growth of salinity stressed barley plants (El-Tayeb 2005). Effects of SA on plants are concentration dependent, treatment duration, plant species, time of treatment and plant organ examined used for pretreatment (Shi et al. 2009). SA is an important signal involved in the activation of plant defense responses against abiotic and biotic stress and plays a crucial role for modifying plant responses to environmental stressors (El-Tayeb et al. 2005). Application of SA at lower concentration enhanced chlorophyll content and photosynthetic rate (Fariduddin et al. 2003) whereas, at higher concentrations, SA caused a high level of stress in plants (Hayat et al. 2010). It has been reported that SA is able to induce the expression of a gene encoding a novel proline-rich protein which is able to polymerize orthosilicic acid to insoluble silica (Kauss et al. 2003).

Regarding the separate roles of Si and SA in reducing osmotic stress and the role of SA in producing prolin-rich proteins, which polymerize Si to silica, the present study aims at investigating the separate and combined effects of Si and SA on growth parameters, antioxidative defense systems and ion accumulation and the mechanisms involved in cucumber seedlings grown under osmotic stress.

**Materials and Methods**

**Plant material and treatments**

Cucumber (Cucumis sativus L.) seeds (cv. Sina) were rinsed thoroughly with distilled water, soaked for 4 h in water and then germinated on moist filter paper in an incubator (Memmert Incubator ICP400) at 28 °C. All experiments were conducts in a greenhouse at 25/18 °C (day/night), 16 h light/8 h dark photoperiod (30 mol/m²/s photon flux density-PFD) and 50% relative humidity. Three uniform seedlings were selected and grown hydroponically in 50 ml falcon tubes filled with half-strength Hoagland nutrient solution which had the following composition: 3 mM KNO₃, 0.5 mM NH₄H₂PO₄, 1 mM MgSO₄•7H₂O, 2.5 mM CaCl₂•2H₂O, 26.2 µM H₃BO₃, 9.15 µM MnCl₂•4H₂O, 0.73 µM ZnSO₄•7H₂O, 0.32 µM CuSO₄•5H₂O, 0.33 µM (NH₄)₆Mo₇O₂₄•4H₂O and 0.0288 µM FeNaEDTA. The nutrient solution was turned over daily. After six days, the seedlings of uniform size were planted into hydroponics plastic pots (one seedling per pot) filled with 700 ml of half-strength Hoagland nutrient solution that was aerated continuously with an air pump. Meanwhile, the solution was also replaced with fresh one every 2 days to prevent nutrient deficiency and the pH of the nutrient solution was adjusted to 6.0 daily using 0.01 mol/l KOH and/or HCl. The seedlings were allowed to grow for 2 weeks. Pretreatment was initiated by adding Si. Sodium metasilicate (Na₂SiO₃) was used as the source of silicon. After 72 hours of pretreatment, the pots were divided into two groups and exposed to osmotic stress. Two factors including chemicals (control, silicon 1.5 mM (Si), salicylic acid 10 µM (SA) and salicylic acid 10 µM + silicon 1.5 mM (Si+SA)) and osmotic stress (0 and 15% PEG) were factorially arranged in randomized complete designs (RCBD) with three replicates. The applied levels of SA and Si used in experiments were based on previous preliminary tests.

All the seedlings were harvested 6 days after treatments with PEG and separated into leaves, stems and roots. The growth parameters (shoot fresh and dry mass and root dry mass) were assessed; the seedlings materials were washed by distilled water, immediately preserved in liquid N₂ and stored at -80 °C prior to biochemical assays.

**Measurement of the growth parameters**

Following harvest, the seedlings were divided into shoots and roots. Total leaf area (LA) was measured by a leaf area meter...
Responses of cucumber seedlings

The amounts of photosynthetic pigments (chlorophyll a, b, total and carotenoids) were determined according to the method of Lichtenthaler (1987). Fresh leaves (0.25 g) were homogenized in acetone 80%, centrifuged at 10 000 g for 5 min and absorbance was recorded at wavelengths of 646.8 and 663.2 nm for chlorophyll assay and 470 nm for carotenoids assay by a UV/Vis spectrophotometer (Cary 50, Varian, Germany).

Lipid peroxidation

Lipid peroxidation was determined using the thiobarbituric acid (TBA) reaction followed by measurement of malondialdehyde (MDA) content (Heath and Packer 1968). One gram of fresh tissue was ground in 10 ml of 0.5% TBA in 20% (w/v) trichloroacetic acid (TCA). The mixture was incubated at 95 °C in a water bath for 30 min and quickly cooled in an ice bath. Then, the homogenate was centrifuged at 10 000 g for 15 min. The absorbance of the supernatant was read at 532 nm. After subtracting the non-specific absorbance at 600 nm, the MDA concentration was calculated using an extinction coefficient of 155/mM/cm.

Hydrogen peroxide (H$_2$O$_2$) content

H$_2$O$_2$ content was determined using the method given by Velioglu et al. (2000). Shoot samples (0.2 g) were extracted with 5 ml of 0.1% TCA and centrifuged at 12 000 g for 15 min. Then 0.5 ml of supernatant was mixed with 0.5 ml of 10 mM phosphate buffer (pH 7.0) and 1 ml of 1 M potassium iodide and the absorbance was determined at 390 nm. The amount of H$_2$O$_2$ was calculated using the extinction coefficient 0.28/ mM/cm and expressed as µmol/g FW (fresh weight).

Electrolyte leakage

The electrolyte leakage (EL) was determined as described by Ben Hamed et al. (2007). The shoot samples (0.2 g) were placed in test tubes containing 10 ml of double distilled water. The tubes were incubated in a water bath at 32 °C for 2 h and the initial electrical conductivity of the medium (EC1) was measured by an EC meter (Metrohm, Switzerland). The samples were autoclaved at 121 °C for 20 min to release all the electrolytes, cooled at 25 °C and the final electrical conductivity (EC2) measured. The electrolyte leakage was calculated by using the formula: EL = (EC1/ EC2) ×100.

Enzyme extraction and activity determination

Leaves (500 mg) were homogenized in 50 mM potassium phosphate buffer (pH 7.0) containing 1% soluble PVP, 1 mM ethylenediaminetetraacetic acid (EDTA) and 1 mM phenyl-methanesulfonyl fluoride (PMSF) with the addition of 10 mM ascorbic acid in the case of the APX assay. The homogenate was centrifuged at 20 000 g for 20 min and the supernatant was used for determination of enzyme activity. All procedures were performed at a temperature of 4 °C. The supernatant was used for measurement of total soluble protein according to Bradford (1976) and expressed as mg/g FW. Bovine serum albumin was used as standard.

Superoxide dismutase (SOD) (EC 1.15.1.1) activity was determined by method of Giannopolitis and Ries (1977). The reaction mixture contained 50 mM potassium phosphate buffer (pH 7.0), 0.1 mM Na-EDTA, 75 µM riboflavin, 13 mM methionine and 0.05 ml the enzyme extract. One unit of SOD was defined as the amount of enzyme required to cause 50% inhibition of the reduction of nitroblue tetrazolium (NBT) as monitored at 560 nm.

Ascorbate peroxidase activity (APX, EC 1.11.1.11) was measured in the presence of 0.5 mM ascorbic acid, 0.15 mM H$_2$O$_2$, 0.1 mM EDTA and 50 µl enzyme extract by monitoring the decrease in absorption at 290 nm (Nakano and Asada 1981). Nanomole ascorbate consumed per min was defined as one unit of APX.

Catalase activity (CAT, EC 1.11.1.6) was assayed by following the decomposition of H$_2$O$_2$ at 240 nm (Dhindsa et al. 1981). The unit (U) of CAT activity was defined as the amount of enzyme that decomposed 1 mM H$_2$O$_2$ per minute per mg protein in 100 µl enzyme extract are given in U/mg of protein.

Total phenolic compounds

Total phenolic content was determined using the Folin-Ciocalteu method Singleton and Rossi (1965) as modified by Velioglu and coworkers (1998). Samples (100 mg) were extracted with 80% methanol containing 1% hydrochloric acid (5 ml) at room temperature on a shaker for 2 hours. The mixture was centrifuged at 3000 g for 10 min. The supernatant was used to determine total phenolics. One hundred microliter of extract was mixed with 0.75 ml of Folin-Ciocalteu reagent (previously diluted tenfold with distilled water) and allowed to stand at 22 °C for 5 min; 0.75 ml of sodium bicarbonate (60 g/l) solution was added to the mixture. After 90 min at 22 °C, absorbance was measured at 725 nm. Gallic acid was used for constructing the standard curve. Results were expressed as mg gallic acid (GA) per gram of the fresh weight.
Total flavonoids

One hundred milligrams of samples were extracted with 10 ml 80% aqueous methanol. The mixture was centrifuged at 2000 g for 10 min. Supernatants were used for subsequent analysis. The flavonoid content was measured employing the colorimetric assay described by Zhishen and coworkers (1999). Aliquots of extracts (0.5 ml) were added to 10 ml volumetric flask containing 4.5 ml distilled water. After 5 min, 0.3 ml 5% sodium nitrite and then 0.6 ml of 10% aluminum chloride was added to each aliquot. After 6 min, 2 ml of 1 M sodium hydroxide was added to the mixture following by the addition of 2.1 ml distilled water. Absorbance was recorded at 510 nm, and flavonoid content was expressed as mg of rutin equivalent (RE) per 100 g of fresh weight.

Anthocyanins

Determination of anthocyanin contents was carried out using the method of Wagner (1979). Samples (0.1 g) were soaked in 10 ml acidified methanol (methanol/HCl, 99:1, v/v). The tissues were crushed and kept in the dark at 25 °C for 24 h. The extracts were then centrifuged at 4 000 g for 5 min at room temperature. The absorption rate of the supernatant was read by spectrophotometer at 550 nm. To calculate the amount of anthocyanins, the extinction coefficient 33,000/mol/cm was used and anthocyanin content were expressed as µmol/g FW.

Element analysis by inductively coupled plasma atomic emission spectroscopy (ICP-OES)

Samples of root and shoot were oven dried at 70 °C for 72 h and after determination of dry biomass, 0.5 g samples dissolved in 10 ml 65% (w/v) nitric acid (supra pure, Merck). After digestion, the volume of each sample was adjusted to 50 ml using double deionized water. Total concentration of K+, Na+ and Si was determined by ICP-OES (720-ES, Varian). The stability of the device was evaluated after determination of every ten samples by examining the internal standard. Reagent blanks were also prepared to detect potential contamination during the digestion and analytical procedure. The samples were analyzed in triplicates. Also, we used standards solutions with a final K+, Na+ and Si concentrations in range of seedlings in the analyzed solution for quality control.

Statistical analysis

Data were subjected to two-way ANOVA using the SPSS (Statistical Package for Social Sciences) software. Significant differences between treatment means were determined by...
Responses of cucumber seedlings

Duncan’s multiple range test (DMRT, 5%) using MSTAT-C.

Results

Growth parameters, leaf relative water contents (RWC), shoot K⁺ uptake and leaf protein contents were reduced under osmotic stress (Table 1). Meanwhile, MDA, H₂O₂, proline, ion leakage and other aldehydes (Table 2) and also the enzyme activity of SOD, APX and GPX were increased under osmotic stress but the leaf protein decreased and no significant changes were observed in the activity of CAT (Table 3).

Under non-stress conditions, Si and SA similarly improved growth parameters, leaf RWC, shoot K⁺ uptake and leaf protein content and the effect of combined Si+SA was not superior to individuals effects (Table 1, 3 and 4). Moreover, no significant change was observed in enzyme activity (Table 3).

Under osmotic stress, Si and SA were highly effective in reducing negative effect of stress and the combined effect of Si+SA was more pronounced. Relative to corresponding control, and under osmotic stress Si, SA and Si+SA, increased LA (37%, 41% and 48%), SPM (25%, 39% and 62%), SDM (32%, 34% and 47%), RWC (8%, 14% and 21%), total phenolic compounds (20%, 23% and 58%), anthocyanins (15%, 20% and 49%), flavonoids (12%, 10% and 30%), shoot K⁺ (11%, 8% and 23%) and PAL activity (22%, 25% and 57%), respectively (Table 1, 2, 3 and 4 ). Moreover, Si, SA and Si+SA reduced MDA (50%, 43% and 61%), H₂O₂ (33%, 32% and 50%), LA (38%, 36% and 50%), proline (30%, 51% and 74%) and other aldehydes (44%, 35% and 60%) under osmotic stress (Table 2). However, under osmotic stress, Si or SA significantly increased the activity of antioxidant enzymes (Table 3) but the better seedling growth performance (LA, SPM, SDM and RWC) and reduced MDA, H₂O₂ and IL in seedlings treated with Si+SA under osmotic stress was not associated with further enhancement of the enzyme activity. However, shoot K⁺ and Si, total phenolic compounds, anthocyanins, total flavonoids and PAL activity were significantly improved with Si+SA that may have contributed toward better performance.

Discussion

The present study indicated that the cucumber growth was significantly affected by osmotic stress. Similar drought-induced reduction in growth attributes have been reported in a number of crop plants including Populus cathayana L. (Yang et al. 2009) and Olea europaea L. (Ennajeh et al. 2009). Osmotic stress causes oxidative stress, because an imbalance between ROS and their removal makes macromolecules and

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PEG</th>
<th>+PEG</th>
<th>PEG</th>
<th>+PEG</th>
<th>+PEG</th>
<th>+PEG</th>
<th>+PEG</th>
<th>+PEG</th>
<th>+PEG</th>
<th>+PEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7.70 c</td>
<td>12.67 b</td>
<td>2.10 d</td>
<td>3.02 bc</td>
<td>1.51 cd</td>
<td>1.96 bc</td>
<td>1.88 d</td>
<td>9.20 a</td>
<td>12.6 a</td>
<td>9.96 c</td>
</tr>
<tr>
<td>Si</td>
<td>9.20 bc</td>
<td>17.56 a</td>
<td>2.16 d</td>
<td>3.77 ab</td>
<td>1.65 cd</td>
<td>2.25 b</td>
<td>2.07 d</td>
<td>5.47 c</td>
<td>12.9 a</td>
<td>10.53 bc</td>
</tr>
<tr>
<td>SA</td>
<td>10.90 bc</td>
<td>17.09 a</td>
<td>2.32 cd</td>
<td>4.28 a</td>
<td>1.33 d</td>
<td>3.06 a</td>
<td>2.43 d</td>
<td>6.91 b</td>
<td>13.1 a</td>
<td>11.05 b</td>
</tr>
<tr>
<td>Si+SA</td>
<td>11.73 b</td>
<td>17.44 a</td>
<td>2.24 cd</td>
<td>4.07 a</td>
<td>1.64 cd</td>
<td>3.26 b</td>
<td>1.97 d</td>
<td>4.43 c</td>
<td>13.2 a</td>
<td>11.03 b</td>
</tr>
</tbody>
</table>

For each parameter, means with similar letter(s) are not significantly different P<0.05 according to Duncan’s multiple range test.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PEG</th>
<th>+PEG</th>
<th>PEG</th>
<th>+PEG</th>
<th>+PEG</th>
<th>+PEG</th>
<th>+PEG</th>
<th>+PEG</th>
<th>+PEG</th>
<th>+PEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>40.8 abc</td>
<td>35.3 d</td>
<td>7.85 a</td>
<td>6.59 bc</td>
<td>0.5 e</td>
<td>0.22 e</td>
<td>20.63 c</td>
<td>23.47 bc</td>
<td>2.44 bc</td>
<td>2.94 ab</td>
</tr>
<tr>
<td>Si</td>
<td>42.3 abc</td>
<td>39.3 bc</td>
<td>6.56 d</td>
<td>7.14 b</td>
<td>11.2 a</td>
<td>4.07 d</td>
<td>22.56 bc</td>
<td>21.70 c</td>
<td>1.88 cd</td>
<td>3.71 a</td>
</tr>
<tr>
<td>SA</td>
<td>46.6 abc</td>
<td>38.3 cd</td>
<td>7.80 a</td>
<td>6.95 bc</td>
<td>0.2 e</td>
<td>0.17 e</td>
<td>20.56 c</td>
<td>22.20 bc</td>
<td>1.44 d</td>
<td>3.34 ab</td>
</tr>
<tr>
<td>Si+SA</td>
<td>44.3 a</td>
<td>43.4 ab</td>
<td>7.06 b</td>
<td>7.61 a</td>
<td>8.00 b</td>
<td>5.81 c</td>
<td>27.40 a</td>
<td>25.46 ab</td>
<td>2.74 abc</td>
<td>3.30 ab</td>
</tr>
</tbody>
</table>

For each parameter, means with similar letter(s) are not significantly different P<0.05 according to Duncan’s multiple range test.
membranes damaged, thus lead to the reduction of plant growth grown under osmotic stress (Ennajeh et al. 2009).

Under non-stress conditions, Si, SA or Si+SA improved seedling performance rather similarly. Although Si has not been generally recognized as an essential nutrient for higher seedlings, its beneficial effects on growth and development have been demonstrated (Epstein 2009). Improved performance of plant growth with Si in soybean (Hamayun et al. 2010) and wheat (Zhu et al. 2004) under non-stress conditions has been reported. Meanwhile, it is notable to state that Si treatment in soybean plant increased GA₃ and GA₄ hormones that play a pivotal role in the growth and development of plants, when added to control or stressed plants (Hamayun et al. 2010). In present study, improved seedling performance under Si treatment was associated with increased RWC under non-stress conditions. Silicon increased extensibility of young elongating cell walls which might be brought about by a silicon-induced decrease in thickness of the primary cell wall itself (Hossain et al. 2002), the physiological mechanism of which is unknown. The better performance of seedling growth treated with SA under non-stress conditions in the present study was associated with increased LA and SDM which is in line with the previous findings in wheat (Shakirova et al. 2003), maize (Gunes et al. 2007), and chamomile (Kováčik et al. 2009). The better growth of wheat seedlings treated with SA was related to increases in indole acetic acid and cytokinin (Shakirova et al. 2003). The effect of exogenous SA on growth depends on the plant species, developmental stage, and the SA concentrations tested.

Under osmotic stress, exogenous Si counteracted the PEG-induced oxidative stress in present study and improved performance of seedling growth and RWC. Similarly, increased seedling dry mass in maize (Kaya et al. 2006), wheat (Gong et al. 2003) and soybean (Hamayun et al. 2010) and improved water use efficiency in sorghum (Enjie et al. 2005), and tomato (Romero-Aranda et al. 2006) plants subjected to osmotic or salt stress has been reported when treated with silicon.

The improved performance of seedlings treated with Si under osmotic stress was associated with increased antioxidant activity (SOD, APX and CAT) which is in line with previous findings in wheat (Gong et al. 2003). Added Si decreased the permeability of plasma membrane of leaf cells (Liang et al. 2006), and significantly improved the ultrastructure of chloroplasts which were badly damaged by the added NaCl with double membranes disappearing and the granae being disintegrated in the absence of Si (Liang 1998).

In present study, Si treatment prevented the increase of MDA and H₂O₂ contents and ion leakage, thereby alleviating the damage normally caused by osmotic stress. Moreover, Si increased K⁺ uptake in shoot and root. Similar results were reported in tomato (Al-Aghabary et al. 2004) and sugarcane (Ashraf et al. 2009) treated with Si under salt stress. It has been reported that efficacy of Si in maintaining membrane integrity may be indirect and lie in part in its effect on increasing K⁺ concentrations in tissues and cells of salt stressed barley plants (Liang et al. 2003) and also increased the activity of plasma membrane H⁺-ATPase. Moreover, in present study Si increased phenolics, anthocyanins, flavones compounds and also PAL activity which is the first key enzyme in phenylpropanoid biosynthesis and known to be linked with enhanced phenylpropanoid biosynthesis (Gomez-Vasquez et al. 2004).

Silicon application significantly increased phenolic components in rose (Shetty et al. 2011) and cucumber (Fawe et al. 1998) under biotic stress and in maize (Kidd et al. 2001) under Al toxicity. Furthermore, Si increased the level of phenolic components, flavonoids and anthocyanins which act, as stated by Winkel-Shirley (2002), as terminators of free radical chains and as cheaters of redox-active metal ions, capable of catalyzing lipid peroxidation, by terminating the Fenton reaction (Jung et al. 2003).

The present study showed that SA improved seedling performance under osmotic stress which was associated with enhanced levels of antioxidant enzymes activity leading to increased K⁺ and Ca²⁺ uptake. Similar results were reported by Kaydan and coworkers (2007) in wheat.

Moreover, the present study revealed that the combined effect of Si+SA was more effective than the individual effects in improving seedling performance under osmotic stress.

### Table 5. Individual and combined effects of silicon (1.5 mM), salicylic acid (10 µM) and PEG (15%) on total phenolic, total flavonoid and anthocyanin contents of shoot.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PAL (Unit/mg protein)</th>
<th>Total phenolic (mg GA/g fw)</th>
<th>Total flavonoid (mg Ru/100 g fw)</th>
<th>Anthocyanin (µmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>- PEG</td>
<td>+ PEG</td>
<td>- PEG</td>
</tr>
<tr>
<td>Control</td>
<td>3.1d</td>
<td>4.2bc</td>
<td>1.20 de</td>
<td>1.14 cd</td>
</tr>
<tr>
<td>Si</td>
<td>3.9 c</td>
<td>4.3 bc</td>
<td>1.31 cd</td>
<td>1.54 bc</td>
</tr>
<tr>
<td>SA</td>
<td>3.7 c</td>
<td>4.4 b</td>
<td>1.45 c</td>
<td>1.72 bc</td>
</tr>
<tr>
<td>Si+SA</td>
<td>4.1 bc</td>
<td>5.8 a</td>
<td>1.38 cd</td>
<td>2.03 a</td>
</tr>
</tbody>
</table>

For each parameter, means with similar letter(s) are not significantly different P<0.05 according to Duncan's multiple range test.
However, the better performance of seedlings with Si+SA was not associated with further enhancing the activity of antioxidant enzymes, though significant higher shoot K concentration was not associated with further enhancing the activity of antioxidative enzyme activities in tomato plants under salt stress. J Plant Physiol 164:685-694.


Mooussa HR (2011) Low dose of gamma irradiation enhanced drought tolerance in soybean. Bulg J Agric Sci
Responses of cucumber seedlings


