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ABSTRACT                        Heterotrimeric G-proteins are signal transducers of heptahelical receptors. They
consist of α and βγ subunits, both capable of interacting with several different effectors.
Specific domains in their structures enable them to connect different intracellular signaling
cascades, such as the adenylyl cyclase, phosphoinositol-bisphosphate or MAP kinase pathways.
Their activity is synchronized by several components, one of them being a new protein family
termed RGS (regulators of G-protein signaling). Members of this family inhibit the G-protein
function. The intracellular localization of G-proteins indicates their role in plasma membrane-
independent processes. Opioid receptors transmit their signals mainly via Gi/o proteins.
Although the heterogeneity of opioid ligands (peptides and alkaloids) and their receptors (µ,
δ, κ and suggested subtypes in these classes) reveals a complicated picture, their unique
characteristic of a high dependence capacity can not be explained without the analysis of the
G-protein function. Acta Biol Szeged 45(1-4):13-21 (2001)
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G-proteins

General features of structure and function

The heterotrimeric guanine nucleotide binding proteins (G-

proteins) have been discovered about 20 years ago, and the

key nature of their participation in signal transduction led to

their discoverers being honored with the Nobel Prize for

medicine in 1994. They function as intermediaries in trans-

membrane signaling pathways that involve three proteins:

receptors, G-proteins, and effectors (Gilman 1987). They

belong in the superfamily of GTPases, which includes factors

that take part in protein synthesis (e.g. elongation factor Tu)

and small molecular weight (20-25 kDa) monomeric G-

proteins, such as p21 ras and its relatives (Hall 1990; Bourne

et al. 1990; Bourne et al. 1991; Kaziro et al. 1991). G-

proteins consist of three subunits, designated α, β and γ.

Traditionally, the type of the α subunit is used to define the

G-protein oligomer. To date, 23 distinct α subunits encoded

by 17 genes have been cloned with molecular masses be-

tween 39 and 46 kDa (Gudermann et al. 1997). They can be

divided into four subfamilies, Gs, Gi, Gq and G12, based on

amino acid sequence homology. Some of them are ubiqui-

tous, e.g. αs, while others are more or less specialized, for

example, αo for brain tissue or αt1 and αt2 for retinal rods and

cones, respectively. G-protein α subunits are enzymes with

inherent GTPase activity. They are also subject to several

cotranslational and posttranslational modifications. αi, αo and

αz are myristoylated at their N-terminus (Mumby et al.

1990); others are modified by different saturated or non-

saturated 12- and 14-carbon fatty acids, facilitating the

membrane attachment of α subunits and increasing their

affinity for βγ dimers (Linder et al. 1991). In addition to this

irreversible lipid modification, some α subunits, e.g. αs, are

reversibly palmitoylated on the cysteine residue nearest the

amino terminus, which seems to have a regulatory function

(Wedegaertner and Bourne 1994). While irreversible modifi-

cations are usually observed in the endoplasmic reticulum,

this reversible lipidation occurs in the cytoplasm. Upon

receptor activation, Gsα undergoes substantial depalmitoy-

lation, which may be further increased by cholera toxin.

Inactivation of the Gsα subunit is associated with repalmitoy-

lation, which inhibits the interaction of this subunit with other

regulatory proteins, e.g. Gα-interacting protein (GAIP). The

lipid sensitivity of the G-protein function implies also that the

lipid composition of the membrane microdomains can

influence the signaling (Green et al. 1999). A characteristic

modification of certain types of G-protein α subunits is the

ADP-ribosylation by bacterial toxins. Pertussis toxin catalyz-

es the covalent binding of ADP-ribose to a cysteine residue

located four amino acids from the C-terminus. All αo and αi

subunits can be modified in this way, resulting in uncoupling

from the receptor by inhibiting the activation of the α subunit.

Cholera toxin specifically ADP-ribosylates an arginine

residue in αt, αs and αolf, leading to inhibited GTPase activity,

that hence to constitutive activation of those α subunits

(Hepler and Gilman 1992). There are also several possible

sites for phosphorylation.
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Five β (35-37 kDa) and 12 γ (8 kDa) subunits have been

described to date (Watson et al. 1994; Ray et al. 1995;

Morishita et al. 1995). They are tightly associated and form

one functional unit. There is evidence that a degree of

specificity governs βγ dimer assembly, and not all possible

combinations are formed (reviewed in Gudermann et al.

1997). Gamma subunits are either farnesylated or geranylger-

anylated, which furnishes the anchorage to the plasma

membrane. It is generally considered that the β subunit

interacts with the α subunit, while the γ subunit determines

the effector specificity in the action of the dimer.

Role of G-proteins in signal transduction

Receptor-G-protein interaction

G-proteins serve as membrane-bound transducers of chemi-

cally and physically coded information. This extracellular

information is received by receptor (R) molecules that are

integrated plasma membrane proteins. Certain classes of such

receptors (e.g. ligand-gated ion channels or tyrosine kinase

receptors) themselves have effector domains, whereas others,

characterized by 7 transmembrane α helical domains (7TM

receptors or G-protein-coupled receptors, GPCRs), first

activate G-proteins, which in turn activate the effector

molecules. The steps in this cycle are presented in Fig. 1.

It is usually the third intracellular domain and the C-

terminal intracellular tail of the receptor molecule that

determine the R-G-protein interaction. For the activation of

G-proteins, Mg2+ and GTP are essential. Little is known

about the regulation of the GTPase cycle, since it proceeds

10 to 100 times faster in vivo than in vitro. However, several

proteins with GTPase-activating properties (GAPs) for Gα
subunits were recently described. They are termed regulators

for G-protein signaling (RGS; Watson et al. 1996). At least

20 different mammalian proteins have been reported to have

an RGS core, a common 120 amino acid domain. Although

the number of different Gα subunits is close to this, there is

not a one to one correspondence between them, and no RGS

specific for Gsα and G12α has so far been identified. The

GTPase-activating domain acts catalytically: a single mole-

cule of RGS can accelerate the GTPase activity of 4-6 Gα
subunits. They not only provide enhancement of the enzy-

matic activity for most of the Gα subunits, but may also

function as effector antagonists and integrators of different

signaling pathways, in consequence of their C- and N-

terminal protein binding motifs (Burchett 2000). One of them

is the GGL (G-protein gamma subunit-like) domain, which,

e.g. in human RGS11, has been shown to form a complex

with Gβ5 (Snow et al. 1998). The RGS11/Gβ5 complex is a

selective regulator of Goα.

G-proteins are also signal amplifiers. This can be

achieved at different levels. First, a single receptor can

activate several G-proteins in turn; second, the dissociation

of α and βγ subunits leads to bifurcation of the signal; and

on the third level, G-protein subunits can activate several

effector molecules before reassociation (Milligan 1996).

G-protein-effector interaction

Recent results show that, upon activation of a G-protein, both

α and βγ subunits are able to interact with different effectors

(Birnbaumer 1992) to induce further changes in the state of

the cell, leading to a response to the extracellular stimulus,

or, in a broader sense, to adaptation. The effectors and their

activator G-protein subunits are listed in Tables 1 and 2.

Influence of G-proteins on the gene expression

One main pathway for the regulation of gene expression by

extracellular signals transduced by GPCRs proceeds via the

activation of adenylyl cyclase and the subsequent production

of cyclic AMP (cAMP). cAMP regulates the transcription of

a variety of genes through a distinct DNA sequence termed

the cAMP response element (CRE), present in their promoter

regions. This element is recognized by the CRE-binding

protein (CREB), a transcription factor of 43 kDa. Activation

of CREB is achieved by cAMP-dependent protein kinase

Figure 1. Ligand-activated GTPase cycle of G-proteins. In the resting
state, heterotrimeric G-proteins bind GDP. The ligand-bound receptor
can activate the G-protein resulting in the exchange of GDP by GTP
and subsequent dissociation of α-GTP and the βγ dimer, each of them
capable of activating effectors. The effect is terminated by the
inherent GTPase activity of the α subunit and the reassociation of α-
GDP with βγ. R: receptor, A: agonist ligand.
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(PKA; Goodman 1990; Montminy et al. 1990; Collins et al.

1992; Zazopoulos et al. 1997)

The other pathway by which G-proteins can exert an

influence is the signaling route of the receptor tyrosine

kinases, such as epidermal growth factor, leading to cell

differentiation, proliferation and cytoskeletal effects through

the mitogen-activated protein kinase (MAPK) cascade. There

are several convergence points between the two signal

transduction pathways (for reviews, see Selbie and Hill 1998;

Seasholtz et al. 1999; Pierce et al. 2001).

Role of intracellular G-proteins

Heterotrimeric G-proteins are found not only in the plasma

membrane fractions, but also inside the cell, in the cytoplasm

or connected to the endomembrane systems such as the Golgi

and the endoplasmic reticulum. They can be detected in the

non-nervous tissues, such as the liver (Lanoix et al. 1989;

Toki et al. 1989), in the muscle (Carrasco et al. 1994) and also

in the brain (Bem et al. 1991; Holz and Tutner 1998).

These intracellular G-proteins can be newly synthesized

molecules, which are transported to the cell surface, probably

in a fully functional state, able to interact with receptors and

also with effectors (Zarbin et al. 1990; Vogel et al. 1991).

Intracellular G-proteins may also be conveyed from the cell

surface as part of the signal transduction process (Zarbin et

al. 1983; Laduron 1992; Szûcs and Coscia 1992). Several

plasma membrane receptors have a nuclear localization

signal in their cytoplasmic tail; accordingly, they, or part of

them, can enter the nucleus either alone or with other proteins

recruited during the signaling process (Laduron 1994).

However, recent results have revealed that G-proteins are not

only transported as passive molecules, but they also have

important intracellular functions. They have been suggested

to regulate various membrane trafficking processes, includ-

ing several steps of secretion. Coat assembly and the sorting

of newly synthesized proteins secreted constitutively in

polarized cells appear to be controlled by heterotrimer G-

proteins (Ktistakis et al. 1992; Robinson and Kreis 1992;

Pimplikar and Simons 1993). The processes of exocytotic

and endocytotic membrane fusion are also under the stimu-

latory control of Gi and the inhibitory control of Go (Bomsel

and Mostov 1992; Ahnert-Hilger et al. 1994; Colombo et al.

1994; Helms 1995). A role of G-proteins in the maintenance

of the highly specialized structure of the blood-brain barrier

has also been suggested (Brett et al. 1989; Hoyer et al. 1991;

Raub 1996; Fábián et al. 1998).

The opioid receptors

Opioid receptor types and function

Opioid receptors also belong in the family of GPCRs, and are

characterized by 7 hydrophobic transmembrane segments

and the ability to interact with different G-proteins (McKen-

zie and Milligan 1990; Offermanns et al. 1991; Laugwitz et

al. 1993). Opioid receptors have been identified in pharma-

cological studies through the use of peptide and alkaloid

ligands, and have been classified into three main classes, µ,

δ and κ (Martin et al. 1976). Cloning of the receptors has

verified this model (Kieffer et al. 1992; Evans et al. 1992;

Chen et al. 1993; Yasuda et al. 1993), but failed to prove the

Table 1. Mammalian G-protein a subunits and effectors interacting with them

Subtype Expression Effectors

α
sS
 (2 forms)* Ubiquitous Adenylyl cyclase ↑ (all types)

α
sL  

(2 forms)* Ubiquitous Ca2+ channel ↑ (L-type)
α

olf
Olfactory epithelium Adenylyl cyclase ↑ (type V)

α
gust

Taste buds, gut ?
α

t-r
Retinal rods cGMP phosphodiesterase ↑

α
t-c

Retinal cones
α

i1
Widely Adenylyl cyclase ↓

α
i2

Ubiquitous (types I, III, V, VI)
α

i3
Nearly ubiquitous K+ channel ↑

α
o1

* Neuronal and neuroendocrine Ca2+ channels ↓
α

o2
* Neuronal and neuroendocrine (Types L and N)

α
z

Neuronal, platelets Adenylyl cyclase ↓ ?

α
q

Ubiquitous Phospholipase-Cβ ↑
α

11
Ubiquitous (β4 ≥ β1 ≥ β3 > β2)

α
14

Kidney, lung, spleen
α

15
 (mouse) Hematopoetic cells

α
16

 (human)

α
12

Ubiquitous ?
α

13
Ubiquitous ?

G-protein a subunits form 4 families based on sequence homology. * Splice variants. The data was taken from Weiland et al. (1997).
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existence of the opioid receptor subtypes proposed for all

three classes on the basis of pharmacological studies. This

suggests that the pharmacological subtypes may result from

posttranslational splicing modifications or differential

protein-protein interactions between receptors or with

associated proteins. The gene structures of all three opioid

receptors afford the possibility of alternative splicing, and

different mRNA products of single opioid receptor gene have

indeed been detected (Gaveriaux-Ruff et al. 1997; Schulz et

al. 1998). It has also been demonstrated that proteins encoded

by the mRNA isoforms of the µ opioid receptor are desensi-

tized at different rates (Koch et al. 1998). Extensive evidence

of pharmacological and functional interactions between

opioid receptor types has accumulated (reviewed by Jordan

et al. 2000). These studies show that heterodimers, such as

µ/δ, exhibit distinct ligand binding and signaling charac-

teristics. Additional signaling features and regulation occur

when δ or κ opioid receptors form heterodimers with β2-

adrenergic receptors (Jordan et al. 2001). This heterooli-

gomerization does not alter the ligand binding or coupling

properties of the receptors (although they couple to different

classes of G-proteins, i.e. Gi/o and Gs), but it affects their

trafficking. When coexpressed with β2 receptors, δ opioid

receptors undergo isoproterenol-mediated endocytosis.

Conversely, the β2 receptors in these cells undergo etorphine-

mediated endocytosis. However, the coexpression of κ opioid

receptors with β2 receptors blocks opioid- and isoproterenol-

mediated endocytosis. Ligand-specific regulation of the

endocytosis has been detected for homooligomers of the δ
receptor. Homodimer formation is reduced by increasing

concentrations of agonists, such as DADLE, DPDPE or

etorphine, while morphine is ineffective. Depolimerization

of the dimers correlated with the internalization of the

receptor (Cvejic and Devi 1997).

Pharmacological effects of the opioid receptors are listed

in Table 3.

Ligand binding to the opioid receptor

Radioligand binding studies combined with site-directed

mutagenesis of the receptor molecules have provided a great

deal of information on the interactions of opioid ligands with

their receptors (for a review, see Raynor et al. 1996). It is

thought that only agonist binding leads to activation of the

receptor, followed by conformational changes and infor-

mation transfer. In contrast, antagonist binding does not elicit

a biological response. Certain charged amino acids in the

transmembrane regions TM II (Asp114), III (Asp147) and VI

(His297) have been shown to be important for ligand binding

and subsequent activation of effectors (Surrat et al. 1994).

Further, opioid peptides and alkaloids, and also agonists and

antagonists bind to different parts of the receptor molecule

(Zastrov et al. 1993; Surrat et al. 1994). In the case of δ
receptors, the third extracellular loop is likewise important

for ligand selectivity (Quock et al. 1999). Identification of the

specific residues in the κ receptor involved in agonist and

antagonist binding may facilitate the further development of

therapeutically useful opioids since κ agonists have minimal

abuse potential and do not cause respiratory depression, two

major side-effects of the use of µ receptor-selective agonists.

Nonetheless, κ agonists are effective analgesics and useful

diuretic agents. Previous results have revealed that frog (Rana

esculenta) brain membranes are suitable for the investigation

of this opioid receptor type, since they contain a high

proportion of κ receptors as compared to µ and δ receptors

Table 2. Mammalian G-protein  b and g subunits and effectors interacting with them

Subtype Expression Effectors

β
1

Ubiquitous Adenylyl cyclase ↓ (type I)
β

2
Ubiquitous Adenylyl cyclase ↑ (types II, IV)

β
3

Ubiquitous Phospholipase-Cβ ↑
β

4
Ubiquitous (β3 ≥ β2 ≥ β1 > β4)

β
5S

* Mainly brain K+ channel ↑
β

5L
* Retina Ca2+ channels ↓

Receptor kinases (types 2, 3) ↑
Phospholipase-A

2
 ↑ ?

γ
1

+ Retinal rods Phosphoinositide 3-kinase ↑  ?
γ

2
Mainly brain ?

γ
3

Mainly brain ?
γ

4
Mainly brain ?

γ
5

Ubiquitous ?
γ

7
Widely distributed ?

γ
8

+ Retinal cones ?
γ

10
Widely distibuted ?

γ
11

+ Widely distributed ?
γ

12
Ubiquitous ?

βγ combinations apparently not formed are β
2
γ

1
 and β

2
γ

11
; tissue-specific combinations are β

1
γ

1
 for retinal rods and β

3
γ

8
 for retinal cones. * Splice variants. + These

γ subunits are farnesylated; all others are geranylgeranylated. The data was taken from Weiland et al. (1997).
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(Simon et al. 1984). Frog brain membranes also contain κ
receptor subtypes, i.e. κ1 and κ2 (Benyhe et al. 1990; Wolle-

mann et al. 1993). A detailed characterization of these

binding sites in ligand binding studies indicated that they

might couple to G-proteins (Benyhe et al. 1991; Rottmann

et al. 1994; Bozó et al. 2000).

Another mode of investigation of ligand-receptor inter-

actions considers energetic aspects. Thermodynamic analysis

provides a means of determining the underlying driving

forces of binding and intermolecular interactions; such

information can not be easily obtained by other techniques.

Thus, conformational changes or protein-protein associations

should provoke characteristic thermodynamic behavior. With

this approach, it has been established that opioid agonist

binding is mainly entropy driven, while opioid antagonist

binding is exothermic, and therefore enthalpy driven (Nicolas

et al. 1982; Hintzemann et al. 1985; Zeman et al. 1987; Borea

et al. 1988; Fábián et al. 1996).

Opioid binding is modulated by a number of reagents.

Na+ and GTP decrease agonist binding without affecting

antagonist binding. Divalent cations also differentiate agonist

and antagonist binding (Szûcs et al. 1987; Benyhe et al. 1989

and references therein). These agents are also to be required

for the functional coupling of opioid receptors to inhibitory

G-proteins (Blume et al. 1979; Childers 1991; Johansson et

al. 1992). By means of thermodynamic investigations,

additional information can be expected about this signal

transduction step. Na+ or Mg2+ results only in quantitative

changes in the thermodynamic parameters. In the presence

of the GTP analog Gpp(NH)p, or Gpp(NH)p + Na+ or

Gpp(NH)p + Na+ + Mg2+, the affinity of dihydromorphine

binding decreases dramatically, which might reflect func-

tional uncoupling of the receptor-ligand complex and G-

proteins. These altered molecular interactions are also

indicated by the curvilinear van’t Hoff plot and entropy

increase (Fábián et al. 1996).

Consequences of repeated ligand
administration

The chronic use of opiates results in drug addiction, including

tolerance to and dependence on the drug; besides its scientific

importance, this phenomenon has a great social impact.

Despite intensive research in this field, the precise molecular

mechanism that accounts for it is unknown.

In biochemical terms, the long-term presence of the

agonist generally leads first to desensitization, which means

that the receptor is unable to activate effector molecules in

consequence of the uncoupling of the receptor from the

transducer G-protein. The reason for this is the phospho-

rylation of the receptor by specific kinases, such as β-

Table 3. Opioid receptor pharmacology

Receptor Biochemical effects Physiological effects

µ cAMP inhibition Analgesia
Stimulation of IP

3
 formation Sedation

Ca2+ channel inhibition Immunosuppression
K+ channel stimulation
   increase of intracellular Ca2+

µ
1

Supraspinal analgesia
Prolactin release
Acetylcholine turnover feeding

µ
2

Spinal analgesia
GH release stimulation
Respiratory depression
Inhibition of GI transit
GPI motility decrease

Morphine-6β-glucuronide Inhibition of GI transit

κ Analgesia
Dysphoria

κ
1

Inhibition of cAMP accumulation Spinal analgesia
Inhibition of PI hydrolysis Diuresis, sedation
Ca2+ channel inhibition Rabbit vas deferens bioassay
K+ channel stimulation

κ
2

Pharmacology unknown Pharmacology unknown
κ

3
Inhibition of cAMP accumulation

KOR-3/ORL-1 K+ channel stimulation Hyperalgesia (early)
Inhibition of cAMP accumulation Supraspinal analgesia (later)

δ Inhibition of cAMP accumulation Analgesia (spinal, supraspinal)
K+ channel stimulation Mouse vas deferens bioassay
   increase of intracellular Ca2+ Dopamine turnover inhibition

GH release stimulation
δ

1
GI motility decrease

δ
2

GI motility decrease

The data was taken from Standifer and Pasternak (1997) with modifications. GH: growth hormone, GI: gastrointestinal, GPI: guinea pig ileum.
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adrenergic receptor kinase (βARK; Arden et al. 1995) or

calcium/calmodulin-dependent protein kinase II (Koch et al.

1997). This occurs on a minute time scale. Desensitization

is usually followed by sequestration and internalization of the

receptor into endosomal vesicles. This is still a minute to

hour-long procedure. Proteins in the endosomal vesicles can

be recycled to the cell surface or degraded in lysosomes. On

a longer time scale, down-regulation of the receptor can

occur, meaning reduction of the total (surface and intracel-

lular) receptor number. This certainly involves much more

complicated regulatory steps in the gene expression, transla-

tion and/or degradation of the certain protein. The above-

mentioned steps might give rise to the pharmacological

phenomenon of tolerance, meaning that the same dose of the

drug becoming ineffective in evoking a given response on

repeated administration, or conversely, an even larger dose

of drug is necessary to achieve the same magnitude of effect.

The term dependence refers more to physiological (or

somatic) and psychological aspects of addiction, the former

characterized by withdrawal symptoms on the cessation of

drug administration, and the latter by drug-seeking behavior.

The different anatomical correlates and molecular mecha-

nisms responsible for the opiate dependence have been

reviewed by Nestler (1992, 1994, 1996).

As mentioned above in the discussion of the possibility

of receptor oligomerization, opioid receptors are regulated in

a ligand-specific manner (Burford et al. 1998; Keith et al.

1998; Allouche et al. 1999; Li et al. 1999). For example, the

agonists DAMGO and endomorphin-1, but not morphine,

caused µ receptor internalization, even though they were

similar in activating individual G-proteins. Since endocytosis

is associated with functional desensitization of receptor-

mediated signal transduction, the differential effects of opiate

drugs on this regulatory mechanism may be of great physio-

logical importance. Whistler et al. (1999) suggest that the

ability of a drug to induce opioid receptor endocytosis is an

independent functional property of agonists, and they intro-

duce the RAVE factor (relative activity versus endocytosis)

as a measure of this. If the peptide agonist DAMGO is

defined as having a RAVE value of 1, morphine has an

approximately 4 times greater RAVE value, showing that its

relative ability to signal is much higher than its relative ability

to induce receptor endocytosis. They also hypothesized that,

in contrast with the prevailing hypothesis, the failure of

morphine-activated receptors to uncouple from G-protein and

endocytose appropriately might be responsible for the high

tolerance induced by this alkaloid.

However, not only receptors take part in the manifestation

of tolerance and dependence, but also other elements of the

signal transduction pathway. Although most emphasis has

been placed on analysis of the internalization and redistri-

bution of GPCRs, it has also been recognized that sustained

agonist treatment of cells can result in alterations in both the

cellular distribution and levels of G-proteins activated by the

relevant GPCR (Nestler et al. 1989; Terwilliger et al. 1991;

Van Vliet et al. 1993; Selley et al. 1997). Exposure of cells

to agonists of receptors linked to G-proteins can the result in

up- or downregulation of cellular levels or redistribution of

G-proteins from membranes to the cytosol. Agonist-induced

reductions in G-protein levels have been observed for

members of each of the Gs, Gi and Gq families of G-proteins,

are likely to be dependent upon the level of receptor ex-

pression or the brain area investigated, and are generally

restricted to the G-protein(s) with which the receptor inter-

acts. The mechanisms responsible vary with cell type and

include both second messenger-dependent and -independent

enhanced protein degradation. An agonist-induced reduction

in cellular G-protein levels can provide one mechanism for

the development of sustained heterologous desensitization

(for a review, see Milligan 1993). Selective upregulation of

certain G-proteins after chronic opioid treatment has also

been reported (Escriba et al. 1994; Manji et al. 1997). The

distinct pattern of changes in G-protein subtypes detected

after morphine administration might represent different

stages of the cellular adaptation to the continuous presence

of the drug and might reflect different roles of the G-protein

subtypes in this process. These data fit into the scheme of

drug regulation of neuronal gene expression suggested by

Nestler (1992, 1994), where one main group of genes target-

ed by the drug effect is that encoding G-proteins. The altered

gene expressions of several components of the cell signaling

system, such as adenylyl cyclase (Avidor-Reis et al. 1996;

Rivera and Gintzler 1998), protein kinase-C (PKC; Ventayol

et al. 1997), G-protein coupled receptor kinase (Ozaita et al.

1998) and protein phosphatases (Bernstein and Welch 1998),

contribute to the neuronal plasticity.

Conclusions

Data obtained by the use of molecular biological tools prove

that heterotrimeric G-proteins are not merely simple on/off

switches of effector functions, but also active integrators of

different intracellular processes. They provide several stages

for the fine-tuned regulation of the cellular functions induced

by different extracellular stimuli. The number of known

members of the RGS family will definitely increase rapidly

in the future, probably including proteins with effects

different from the activation of GTP hydrolysis. Having

several protein-protein interaction domains, G-proteins can

regulate the compositions of molecular complexes formed

after ligand-receptor activation, recruiting components

known previously to belong to separated signaling pathways.

As we begin to understand the detailed molecular mecha-

nisms involved in the signaling of opioid receptors, the

complexity is becoming increasingly evident. The hetero-

geneity of the receptors (µ, δ, κ and several subtypes in these

classes) and of the signal transducer G-proteins interacting
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with them is further complicated by the variety of down-

stream elements of different signaling cascades. This wide

array of interactions and regulatory effects might provide the

basis of the unique properties of the opioid ligands in

inducing heavy addiction in drug users. The clue to the

prevention of the manifestation of tolerance in the clinical use

of opioids or the successful therapy of opioid-dependent

patients lies in identification of the particular signaling

complexes implicated in the post-receptor events.
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